MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfusubc0 Structured version   Visualization version   GIF version

Theorem idfusubc0 17959
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.)
Hypotheses
Ref Expression
idfusubc.s 𝑆 = (𝐶cat 𝐽)
idfusubc.i 𝐼 = (idfunc𝑆)
idfusubc.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
idfusubc0 (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = ⟨( I ↾ 𝐵), (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))⟩)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem idfusubc0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idfusubc.i . . 3 𝐼 = (idfunc𝑆)
2 idfusubc.b . . 3 𝐵 = (Base‘𝑆)
3 idfusubc.s . . . 4 𝑆 = (𝐶cat 𝐽)
4 id 22 . . . 4 (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶))
53, 4subccat 17908 . . 3 (𝐽 ∈ (Subcat‘𝐶) → 𝑆 ∈ Cat)
6 eqid 2737 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
71, 2, 5, 6idfuval 17936 . 2 (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))⟩)
8 fveq2 6914 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝑆)‘𝑧) = ((Hom ‘𝑆)‘⟨𝑥, 𝑦⟩))
9 df-ov 7441 . . . . . . 7 (𝑥(Hom ‘𝑆)𝑦) = ((Hom ‘𝑆)‘⟨𝑥, 𝑦⟩)
108, 9eqtr4di 2795 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝑆)‘𝑧) = (𝑥(Hom ‘𝑆)𝑦))
1110reseq2d 6004 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ( I ↾ ((Hom ‘𝑆)‘𝑧)) = ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))
1211mpompt 7554 . . . 4 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))
1312a1i 11 . . 3 (𝐽 ∈ (Subcat‘𝐶) → (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))))
1413opeq2d 4888 . 2 (𝐽 ∈ (Subcat‘𝐶) → ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))⟩)
157, 14eqtrd 2777 1 (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = ⟨( I ↾ 𝐵), (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4640  cmpt 5234   I cid 5586   × cxp 5691  cres 5695  cfv 6569  (class class class)co 7438  cmpo 7440  Basecbs 17254  Hom chom 17318  cat cresc 17865  Subcatcsubc 17866  idfunccidfu 17915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-hom 17331  df-cco 17332  df-cat 17722  df-cid 17723  df-homf 17724  df-ssc 17867  df-resc 17868  df-subc 17869  df-idfu 17919
This theorem is referenced by:  idfusubc  17960
  Copyright terms: Public domain W3C validator