Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfusubc0 Structured version   Visualization version   GIF version

Theorem idfusubc0 42894
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.)
Hypotheses
Ref Expression
idfusubc.s 𝑆 = (𝐶cat 𝐽)
idfusubc.i 𝐼 = (idfunc𝑆)
idfusubc.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
idfusubc0 (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = ⟨( I ↾ 𝐵), (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))⟩)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem idfusubc0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idfusubc.i . . 3 𝐼 = (idfunc𝑆)
2 idfusubc.b . . 3 𝐵 = (Base‘𝑆)
3 idfusubc.s . . . 4 𝑆 = (𝐶cat 𝐽)
4 id 22 . . . 4 (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶))
53, 4subccat 16904 . . 3 (𝐽 ∈ (Subcat‘𝐶) → 𝑆 ∈ Cat)
6 eqid 2778 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
71, 2, 5, 6idfuval 16932 . 2 (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))⟩)
8 fveq2 6448 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝑆)‘𝑧) = ((Hom ‘𝑆)‘⟨𝑥, 𝑦⟩))
9 df-ov 6927 . . . . . . 7 (𝑥(Hom ‘𝑆)𝑦) = ((Hom ‘𝑆)‘⟨𝑥, 𝑦⟩)
108, 9syl6eqr 2832 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝑆)‘𝑧) = (𝑥(Hom ‘𝑆)𝑦))
1110reseq2d 5644 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ( I ↾ ((Hom ‘𝑆)‘𝑧)) = ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))
1211mpt2mpt 7031 . . . 4 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))
1312a1i 11 . . 3 (𝐽 ∈ (Subcat‘𝐶) → (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))))
1413opeq2d 4645 . 2 (𝐽 ∈ (Subcat‘𝐶) → ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))⟩)
157, 14eqtrd 2814 1 (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = ⟨( I ↾ 𝐵), (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cop 4404  cmpt 4967   I cid 5262   × cxp 5355  cres 5359  cfv 6137  (class class class)co 6924  cmpt2 6926  Basecbs 16266  Hom chom 16360  cat cresc 16864  Subcatcsubc 16865  idfunccidfu 16911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-hom 16373  df-cco 16374  df-cat 16725  df-cid 16726  df-homf 16727  df-ssc 16866  df-resc 16867  df-subc 16868  df-idfu 16915
This theorem is referenced by:  idfusubc  42895
  Copyright terms: Public domain W3C validator