| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfusubc0 | Structured version Visualization version GIF version | ||
| Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
| idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
| idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| idfusubc0 | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
| 2 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | idfusubc.s | . . . 4 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
| 4 | id 22 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
| 5 | 3, 4 | subccat 17773 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝑆 ∈ Cat) |
| 6 | eqid 2729 | . . 3 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
| 7 | 1, 2, 5, 6 | idfuval 17801 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉) |
| 8 | fveq2 6826 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉)) | |
| 9 | df-ov 7356 | . . . . . . 7 ⊢ (𝑥(Hom ‘𝑆)𝑦) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉) | |
| 10 | 8, 9 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = (𝑥(Hom ‘𝑆)𝑦)) |
| 11 | 10 | reseq2d 5934 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ( I ↾ ((Hom ‘𝑆)‘𝑧)) = ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
| 12 | 11 | mpompt 7467 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))) |
| 14 | 13 | opeq2d 4834 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| 15 | 7, 14 | eqtrd 2764 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 ↦ cmpt 5176 I cid 5517 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 Hom chom 17190 ↾cat cresc 17733 Subcatcsubc 17734 idfunccidfu 17780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-homf 17594 df-ssc 17735 df-resc 17736 df-subc 17737 df-idfu 17784 |
| This theorem is referenced by: idfusubc 17825 |
| Copyright terms: Public domain | W3C validator |