Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idfusubc0 | Structured version Visualization version GIF version |
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
Ref | Expression |
---|---|
idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
idfusubc0 | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
2 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | idfusubc.s | . . . 4 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
4 | id 22 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
5 | 3, 4 | subccat 17661 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝑆 ∈ Cat) |
6 | eqid 2736 | . . 3 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
7 | 1, 2, 5, 6 | idfuval 17689 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉) |
8 | fveq2 6826 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉)) | |
9 | df-ov 7341 | . . . . . . 7 ⊢ (𝑥(Hom ‘𝑆)𝑦) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉) | |
10 | 8, 9 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = (𝑥(Hom ‘𝑆)𝑦)) |
11 | 10 | reseq2d 5924 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ( I ↾ ((Hom ‘𝑆)‘𝑧)) = ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
12 | 11 | mpompt 7451 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
13 | 12 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))) |
14 | 13 | opeq2d 4825 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
15 | 7, 14 | eqtrd 2776 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 〈cop 4580 ↦ cmpt 5176 I cid 5518 × cxp 5619 ↾ cres 5623 ‘cfv 6480 (class class class)co 7338 ∈ cmpo 7340 Basecbs 17010 Hom chom 17071 ↾cat cresc 17618 Subcatcsubc 17619 idfunccidfu 17668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-hom 17084 df-cco 17085 df-cat 17475 df-cid 17476 df-homf 17477 df-ssc 17620 df-resc 17621 df-subc 17622 df-idfu 17672 |
This theorem is referenced by: idfusubc 45842 |
Copyright terms: Public domain | W3C validator |