![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idfusubc0 | Structured version Visualization version GIF version |
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
Ref | Expression |
---|---|
idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
idfusubc0 | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
2 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | idfusubc.s | . . . 4 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
4 | id 22 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
5 | 3, 4 | subccat 17908 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝑆 ∈ Cat) |
6 | eqid 2737 | . . 3 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
7 | 1, 2, 5, 6 | idfuval 17936 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉) |
8 | fveq2 6914 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉)) | |
9 | df-ov 7441 | . . . . . . 7 ⊢ (𝑥(Hom ‘𝑆)𝑦) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉) | |
10 | 8, 9 | eqtr4di 2795 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = (𝑥(Hom ‘𝑆)𝑦)) |
11 | 10 | reseq2d 6004 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ( I ↾ ((Hom ‘𝑆)‘𝑧)) = ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
12 | 11 | mpompt 7554 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
13 | 12 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))) |
14 | 13 | opeq2d 4888 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
15 | 7, 14 | eqtrd 2777 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 ↦ cmpt 5234 I cid 5586 × cxp 5691 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 Basecbs 17254 Hom chom 17318 ↾cat cresc 17865 Subcatcsubc 17866 idfunccidfu 17915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-hom 17331 df-cco 17332 df-cat 17722 df-cid 17723 df-homf 17724 df-ssc 17867 df-resc 17868 df-subc 17869 df-idfu 17919 |
This theorem is referenced by: idfusubc 17960 |
Copyright terms: Public domain | W3C validator |