| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfusubc0 | Structured version Visualization version GIF version | ||
| Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
| idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
| idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| idfusubc0 | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
| 2 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | idfusubc.s | . . . 4 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
| 4 | id 22 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
| 5 | 3, 4 | subccat 17863 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝑆 ∈ Cat) |
| 6 | eqid 2734 | . . 3 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
| 7 | 1, 2, 5, 6 | idfuval 17891 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉) |
| 8 | fveq2 6885 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉)) | |
| 9 | df-ov 7415 | . . . . . . 7 ⊢ (𝑥(Hom ‘𝑆)𝑦) = ((Hom ‘𝑆)‘〈𝑥, 𝑦〉) | |
| 10 | 8, 9 | eqtr4di 2787 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((Hom ‘𝑆)‘𝑧) = (𝑥(Hom ‘𝑆)𝑦)) |
| 11 | 10 | reseq2d 5977 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ( I ↾ ((Hom ‘𝑆)‘𝑧)) = ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
| 12 | 11 | mpompt 7528 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))) |
| 14 | 13 | opeq2d 4860 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝑆)‘𝑧)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| 15 | 7, 14 | eqtrd 2769 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 ↦ cmpt 5205 I cid 5557 × cxp 5663 ↾ cres 5667 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 Basecbs 17228 Hom chom 17283 ↾cat cresc 17822 Subcatcsubc 17823 idfunccidfu 17870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-hom 17296 df-cco 17297 df-cat 17681 df-cid 17682 df-homf 17683 df-ssc 17824 df-resc 17825 df-subc 17826 df-idfu 17874 |
| This theorem is referenced by: idfusubc 17915 |
| Copyright terms: Public domain | W3C validator |