MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs2 Structured version   Visualization version   GIF version

Theorem isacs2 17621
Description: In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
Distinct variable groups:   𝐶,𝑠,𝑦   𝐹,𝑠,𝑦   𝑋,𝑠,𝑦

Proof of Theorem isacs2
Dummy variables 𝑓 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacs 17619 . 2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
2 ffun 6694 . . . . . . . . . . 11 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → Fun 𝑓)
3 funiunfv 7225 . . . . . . . . . . 11 (Fun 𝑓 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) = (𝑓 “ (𝒫 𝑡 ∩ Fin)))
42, 3syl 17 . . . . . . . . . 10 (𝑓:𝒫 𝑋⟶𝒫 𝑋 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) = (𝑓 “ (𝒫 𝑡 ∩ Fin)))
54sseq1d 3981 . . . . . . . . 9 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ( 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6 iunss 5012 . . . . . . . . 9 ( 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)
75, 6bitr3di 286 . . . . . . . 8 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
87bibi2d 342 . . . . . . 7 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ((𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
98ralbidv 3157 . . . . . 6 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
109pm5.32i 574 . . . . 5 ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
1110exbii 1848 . . . 4 (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
12 simpll 766 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
13 elinel1 4167 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
1413elpwid 4575 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
1514adantl 481 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
16 simplr 768 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠𝐶)
17 isacs2.f . . . . . . . . . . . . 13 𝐹 = (mrCls‘𝐶)
1817mrcsscl 17588 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑠𝑠𝐶) → (𝐹𝑦) ⊆ 𝑠)
1912, 15, 16, 18syl3anc 1373 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ⊆ 𝑠)
2019ralrimiva 3126 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)
2120ad4ant14 752 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑠𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)
22 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2322sseq1d 3981 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → ((𝑓𝑧) ⊆ (𝐹𝑦) ↔ (𝑓𝑦) ⊆ (𝐹𝑦)))
24 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
2514adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
26 elpwi 4573 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
2726ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠𝑋)
2825, 27sstrd 3960 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑋)
2917mrccl 17579 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ 𝐶)
3024, 28, 29syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ∈ 𝐶)
31 eleq1 2817 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐹𝑦) → (𝑡𝐶 ↔ (𝐹𝑦) ∈ 𝐶))
32 pweq 4580 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐹𝑦) → 𝒫 𝑡 = 𝒫 (𝐹𝑦))
3332ineq1d 4185 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐹𝑦) → (𝒫 𝑡 ∩ Fin) = (𝒫 (𝐹𝑦) ∩ Fin))
34 sseq2 3976 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐹𝑦) → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝑓𝑧) ⊆ (𝐹𝑦)))
3533, 34raleqbidv 3321 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐹𝑦) → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦)))
3631, 35bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐹𝑦) → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ((𝐹𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦))))
37 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
3837ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
39 mresspw 17560 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
4039ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ⊆ 𝒫 𝑋)
4140, 30sseldd 3950 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ∈ 𝒫 𝑋)
4236, 38, 41rspcdva 3592 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦)))
4330, 42mpbid 232 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦))
4424, 17, 28mrcssidd 17593 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ (𝐹𝑦))
45 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4645elpw 4570 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ 𝒫 (𝐹𝑦) ↔ 𝑦 ⊆ (𝐹𝑦))
4744, 46sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ 𝒫 (𝐹𝑦))
48 elinel2 4168 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
4948adantl 481 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
5047, 49elind 4166 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ (𝒫 (𝐹𝑦) ∩ Fin))
5123, 43, 50rspcdva 3592 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝑓𝑦) ⊆ (𝐹𝑦))
52 sstr2 3956 . . . . . . . . . . . . . 14 ((𝑓𝑦) ⊆ (𝐹𝑦) → ((𝐹𝑦) ⊆ 𝑠 → (𝑓𝑦) ⊆ 𝑠))
5351, 52syl 17 . . . . . . . . . . . . 13 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹𝑦) ⊆ 𝑠 → (𝑓𝑦) ⊆ 𝑠))
5453ralimdva 3146 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠 → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠))
5554imp 406 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠)
56 fveq2 6861 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
5756sseq1d 3981 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑓𝑦) ⊆ 𝑠 ↔ (𝑓𝑧) ⊆ 𝑠))
5857cbvralvw 3216 . . . . . . . . . . 11 (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)
5955, 58sylib 218 . . . . . . . . . 10 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)
60 eleq1 2817 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (𝑡𝐶𝑠𝐶))
61 pweq 4580 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → 𝒫 𝑡 = 𝒫 𝑠)
6261ineq1d 4185 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝒫 𝑡 ∩ Fin) = (𝒫 𝑠 ∩ Fin))
63 sseq2 3976 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝑓𝑧) ⊆ 𝑠))
6462, 63raleqbidv 3321 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠))
6560, 64bibi12d 345 . . . . . . . . . . 11 (𝑡 = 𝑠 → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ (𝑠𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)))
6637ad2antrr 726 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
67 simplr 768 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → 𝑠 ∈ 𝒫 𝑋)
6865, 66, 67rspcdva 3592 . . . . . . . . . 10 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → (𝑠𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠))
6959, 68mpbird 257 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → 𝑠𝐶)
7021, 69impbida 800 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
7170ralrimiva 3126 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
7271ex 412 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
7372exlimdv 1933 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
7417mrcf 17577 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7574, 39fssd 6708 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
7617fvexi 6875 . . . . . . . 8 𝐹 ∈ V
77 feq1 6669 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
78 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
7978sseq1d 3981 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝐹𝑧) ⊆ 𝑡))
8079ralbidv 3157 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑧) ⊆ 𝑡))
81 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
8281sseq1d 3981 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐹𝑧) ⊆ 𝑡 ↔ (𝐹𝑦) ⊆ 𝑡))
8382cbvralvw 3216 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)
8480, 83bitrdi 287 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡))
8584bibi2d 342 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ (𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)))
8685ralbidv 3157 . . . . . . . . . 10 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)))
87 sseq2 3976 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝐹𝑦) ⊆ 𝑡 ↔ (𝐹𝑦) ⊆ 𝑠))
8862, 87raleqbidv 3321 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
8960, 88bibi12d 345 . . . . . . . . . . 11 (𝑡 = 𝑠 → ((𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡) ↔ (𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9089cbvralvw 3216 . . . . . . . . . 10 (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
9186, 90bitrdi 287 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9277, 91anbi12d 632 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))))
9376, 92spcev 3575 . . . . . . 7 ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
9475, 93sylan 580 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
9594ex 412 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))))
9673, 95impbid 212 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9711, 96bitrid 283 . . 3 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9897pm5.32i 574 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
991, 98bitri 275 1 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   ciun 4958  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  Fincfn 8921  Moorecmre 17550  mrClscmrc 17551  ACScacs 17553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-mre 17554  df-mrc 17555  df-acs 17557
This theorem is referenced by:  acsfiel  17622  isacs5  18514
  Copyright terms: Public domain W3C validator