MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs2 Structured version   Visualization version   GIF version

Theorem isacs2 16916
Description: In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
Distinct variable groups:   𝐶,𝑠,𝑦   𝐹,𝑠,𝑦   𝑋,𝑠,𝑦

Proof of Theorem isacs2
Dummy variables 𝑓 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacs 16914 . 2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
2 ffun 6490 . . . . . . . . . . 11 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → Fun 𝑓)
3 funiunfv 6985 . . . . . . . . . . 11 (Fun 𝑓 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) = (𝑓 “ (𝒫 𝑡 ∩ Fin)))
42, 3syl 17 . . . . . . . . . 10 (𝑓:𝒫 𝑋⟶𝒫 𝑋 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) = (𝑓 “ (𝒫 𝑡 ∩ Fin)))
54sseq1d 3946 . . . . . . . . 9 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ( 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6 iunss 4932 . . . . . . . . 9 ( 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)
75, 6bitr3di 289 . . . . . . . 8 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
87bibi2d 346 . . . . . . 7 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ((𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
98ralbidv 3162 . . . . . 6 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
109pm5.32i 578 . . . . 5 ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
1110exbii 1849 . . . 4 (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
12 simpll 766 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
13 elinel1 4122 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
1413elpwid 4508 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
1514adantl 485 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
16 simplr 768 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠𝐶)
17 isacs2.f . . . . . . . . . . . . 13 𝐹 = (mrCls‘𝐶)
1817mrcsscl 16883 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑠𝑠𝐶) → (𝐹𝑦) ⊆ 𝑠)
1912, 15, 16, 18syl3anc 1368 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ⊆ 𝑠)
2019ralrimiva 3149 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)
2120ad4ant14 751 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑠𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)
22 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2322sseq1d 3946 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → ((𝑓𝑧) ⊆ (𝐹𝑦) ↔ (𝑓𝑦) ⊆ (𝐹𝑦)))
24 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
2514adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
26 elpwi 4506 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
2726ad2antlr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠𝑋)
2825, 27sstrd 3925 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑋)
2917mrccl 16874 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ 𝐶)
3024, 28, 29syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ∈ 𝐶)
31 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐹𝑦) → (𝑡𝐶 ↔ (𝐹𝑦) ∈ 𝐶))
32 pweq 4513 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐹𝑦) → 𝒫 𝑡 = 𝒫 (𝐹𝑦))
3332ineq1d 4138 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐹𝑦) → (𝒫 𝑡 ∩ Fin) = (𝒫 (𝐹𝑦) ∩ Fin))
34 sseq2 3941 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐹𝑦) → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝑓𝑧) ⊆ (𝐹𝑦)))
3533, 34raleqbidv 3354 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐹𝑦) → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦)))
3631, 35bibi12d 349 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐹𝑦) → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ((𝐹𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦))))
37 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
3837ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
39 mresspw 16855 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
4039ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ⊆ 𝒫 𝑋)
4140, 30sseldd 3916 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ∈ 𝒫 𝑋)
4236, 38, 41rspcdva 3573 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦)))
4330, 42mpbid 235 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦))
4424, 17, 28mrcssidd 16888 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ (𝐹𝑦))
45 vex 3444 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4645elpw 4501 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ 𝒫 (𝐹𝑦) ↔ 𝑦 ⊆ (𝐹𝑦))
4744, 46sylibr 237 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ 𝒫 (𝐹𝑦))
48 elinel2 4123 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
4948adantl 485 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
5047, 49elind 4121 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ (𝒫 (𝐹𝑦) ∩ Fin))
5123, 43, 50rspcdva 3573 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝑓𝑦) ⊆ (𝐹𝑦))
52 sstr2 3922 . . . . . . . . . . . . . 14 ((𝑓𝑦) ⊆ (𝐹𝑦) → ((𝐹𝑦) ⊆ 𝑠 → (𝑓𝑦) ⊆ 𝑠))
5351, 52syl 17 . . . . . . . . . . . . 13 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹𝑦) ⊆ 𝑠 → (𝑓𝑦) ⊆ 𝑠))
5453ralimdva 3144 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠 → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠))
5554imp 410 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠)
56 fveq2 6645 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
5756sseq1d 3946 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑓𝑦) ⊆ 𝑠 ↔ (𝑓𝑧) ⊆ 𝑠))
5857cbvralvw 3396 . . . . . . . . . . 11 (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)
5955, 58sylib 221 . . . . . . . . . 10 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)
60 eleq1 2877 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (𝑡𝐶𝑠𝐶))
61 pweq 4513 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → 𝒫 𝑡 = 𝒫 𝑠)
6261ineq1d 4138 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝒫 𝑡 ∩ Fin) = (𝒫 𝑠 ∩ Fin))
63 sseq2 3941 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝑓𝑧) ⊆ 𝑠))
6462, 63raleqbidv 3354 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠))
6560, 64bibi12d 349 . . . . . . . . . . 11 (𝑡 = 𝑠 → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ (𝑠𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)))
6637ad2antrr 725 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
67 simplr 768 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → 𝑠 ∈ 𝒫 𝑋)
6865, 66, 67rspcdva 3573 . . . . . . . . . 10 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → (𝑠𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠))
6959, 68mpbird 260 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → 𝑠𝐶)
7021, 69impbida 800 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
7170ralrimiva 3149 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
7271ex 416 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
7372exlimdv 1934 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
7417mrcf 16872 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7574, 39fssd 6502 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
7617fvexi 6659 . . . . . . . 8 𝐹 ∈ V
77 feq1 6468 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
78 fveq1 6644 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
7978sseq1d 3946 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝐹𝑧) ⊆ 𝑡))
8079ralbidv 3162 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑧) ⊆ 𝑡))
81 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
8281sseq1d 3946 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐹𝑧) ⊆ 𝑡 ↔ (𝐹𝑦) ⊆ 𝑡))
8382cbvralvw 3396 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)
8480, 83syl6bb 290 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡))
8584bibi2d 346 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ (𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)))
8685ralbidv 3162 . . . . . . . . . 10 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)))
87 sseq2 3941 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝐹𝑦) ⊆ 𝑡 ↔ (𝐹𝑦) ⊆ 𝑠))
8862, 87raleqbidv 3354 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
8960, 88bibi12d 349 . . . . . . . . . . 11 (𝑡 = 𝑠 → ((𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡) ↔ (𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9089cbvralvw 3396 . . . . . . . . . 10 (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
9186, 90syl6bb 290 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9277, 91anbi12d 633 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))))
9376, 92spcev 3555 . . . . . . 7 ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
9475, 93sylan 583 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
9594ex 416 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))))
9673, 95impbid 215 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9711, 96syl5bb 286 . . 3 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9897pm5.32i 578 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
991, 98bitri 278 1 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   ciun 4881  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  Fincfn 8492  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-mre 16849  df-mrc 16850  df-acs 16852
This theorem is referenced by:  acsfiel  16917  isacs5  17774
  Copyright terms: Public domain W3C validator