Step | Hyp | Ref
| Expression |
1 | | isacs 17360 |
. 2
⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))) |
2 | | ffun 6603 |
. . . . . . . . . . 11
⊢ (𝑓:𝒫 𝑋⟶𝒫 𝑋 → Fun 𝑓) |
3 | | funiunfv 7121 |
. . . . . . . . . . 11
⊢ (Fun
𝑓 → ∪ 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) = ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin))) |
4 | 2, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ∪
𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) = ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin))) |
5 | 4 | sseq1d 3952 |
. . . . . . . . 9
⊢ (𝑓:𝒫 𝑋⟶𝒫 𝑋 → (∪
𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) |
6 | | iunss 4975 |
. . . . . . . . 9
⊢ (∪ 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡) |
7 | 5, 6 | bitr3di 286 |
. . . . . . . 8
⊢ (𝑓:𝒫 𝑋⟶𝒫 𝑋 → (∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) |
8 | 7 | bibi2d 343 |
. . . . . . 7
⊢ (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ((𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) |
9 | 8 | ralbidv 3112 |
. . . . . 6
⊢ (𝑓:𝒫 𝑋⟶𝒫 𝑋 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) |
10 | 9 | pm5.32i 575 |
. . . . 5
⊢ ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) |
11 | 10 | exbii 1850 |
. . . 4
⊢
(∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) |
12 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋)) |
13 | | elinel1 4129 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠) |
14 | 13 | elpwid 4544 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ⊆ 𝑠) |
15 | 14 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ 𝑠) |
16 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠 ∈ 𝐶) |
17 | | isacs2.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (mrCls‘𝐶) |
18 | 17 | mrcsscl 17329 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ⊆ 𝑠 ∧ 𝑠 ∈ 𝐶) → (𝐹‘𝑦) ⊆ 𝑠) |
19 | 12, 15, 16, 18 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹‘𝑦) ⊆ 𝑠) |
20 | 19 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) |
21 | 20 | ad4ant14 749 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑠 ∈ 𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) |
22 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → (𝑓‘𝑧) = (𝑓‘𝑦)) |
23 | 22 | sseq1d 3952 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ((𝑓‘𝑧) ⊆ (𝐹‘𝑦) ↔ (𝑓‘𝑦) ⊆ (𝐹‘𝑦))) |
24 | | simplll 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋)) |
25 | 14 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ 𝑠) |
26 | | elpwi 4542 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) |
27 | 26 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠 ⊆ 𝑋) |
28 | 25, 27 | sstrd 3931 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ 𝑋) |
29 | 17 | mrccl 17320 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ⊆ 𝑋) → (𝐹‘𝑦) ∈ 𝐶) |
30 | 24, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹‘𝑦) ∈ 𝐶) |
31 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (𝐹‘𝑦) → (𝑡 ∈ 𝐶 ↔ (𝐹‘𝑦) ∈ 𝐶)) |
32 | | pweq 4549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = (𝐹‘𝑦) → 𝒫 𝑡 = 𝒫 (𝐹‘𝑦)) |
33 | 32 | ineq1d 4145 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝐹‘𝑦) → (𝒫 𝑡 ∩ Fin) = (𝒫 (𝐹‘𝑦) ∩ Fin)) |
34 | | sseq2 3947 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝐹‘𝑦) → ((𝑓‘𝑧) ⊆ 𝑡 ↔ (𝑓‘𝑧) ⊆ (𝐹‘𝑦))) |
35 | 33, 34 | raleqbidv 3336 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (𝐹‘𝑦) → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 (𝐹‘𝑦) ∩ Fin)(𝑓‘𝑧) ⊆ (𝐹‘𝑦))) |
36 | 31, 35 | bibi12d 346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (𝐹‘𝑦) → ((𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡) ↔ ((𝐹‘𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹‘𝑦) ∩ Fin)(𝑓‘𝑧) ⊆ (𝐹‘𝑦)))) |
37 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) → ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) |
38 | 37 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) |
39 | | mresspw 17301 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) |
40 | 39 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ⊆ 𝒫 𝑋) |
41 | 40, 30 | sseldd 3922 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹‘𝑦) ∈ 𝒫 𝑋) |
42 | 36, 38, 41 | rspcdva 3562 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹‘𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹‘𝑦) ∩ Fin)(𝑓‘𝑧) ⊆ (𝐹‘𝑦))) |
43 | 30, 42 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑧 ∈ (𝒫 (𝐹‘𝑦) ∩ Fin)(𝑓‘𝑧) ⊆ (𝐹‘𝑦)) |
44 | 24, 17, 28 | mrcssidd 17334 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ (𝐹‘𝑦)) |
45 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
46 | 45 | elpw 4537 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝒫 (𝐹‘𝑦) ↔ 𝑦 ⊆ (𝐹‘𝑦)) |
47 | 44, 46 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ 𝒫 (𝐹‘𝑦)) |
48 | | elinel2 4130 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin) |
49 | 48 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin) |
50 | 47, 49 | elind 4128 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ (𝒫 (𝐹‘𝑦) ∩ Fin)) |
51 | 23, 43, 50 | rspcdva 3562 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝑓‘𝑦) ⊆ (𝐹‘𝑦)) |
52 | | sstr2 3928 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑦) ⊆ (𝐹‘𝑦) → ((𝐹‘𝑦) ⊆ 𝑠 → (𝑓‘𝑦) ⊆ 𝑠)) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹‘𝑦) ⊆ 𝑠 → (𝑓‘𝑦) ⊆ 𝑠)) |
54 | 53 | ralimdva 3108 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠 → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑦) ⊆ 𝑠)) |
55 | 54 | imp 407 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑦) ⊆ 𝑠) |
56 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑓‘𝑦) = (𝑓‘𝑧)) |
57 | 56 | sseq1d 3952 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑓‘𝑦) ⊆ 𝑠 ↔ (𝑓‘𝑧) ⊆ 𝑠)) |
58 | 57 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
(𝒫 𝑠 ∩
Fin)(𝑓‘𝑦) ⊆ 𝑠 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑠) |
59 | 55, 58 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑠) |
60 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑠 → (𝑡 ∈ 𝐶 ↔ 𝑠 ∈ 𝐶)) |
61 | | pweq 4549 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑠 → 𝒫 𝑡 = 𝒫 𝑠) |
62 | 61 | ineq1d 4145 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑠 → (𝒫 𝑡 ∩ Fin) = (𝒫 𝑠 ∩ Fin)) |
63 | | sseq2 3947 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑠 → ((𝑓‘𝑧) ⊆ 𝑡 ↔ (𝑓‘𝑧) ⊆ 𝑠)) |
64 | 62, 63 | raleqbidv 3336 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑠 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑠)) |
65 | 60, 64 | bibi12d 346 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑠 → ((𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡) ↔ (𝑠 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑠))) |
66 | 37 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) |
67 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → 𝑠 ∈ 𝒫 𝑋) |
68 | 65, 66, 67 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → (𝑠 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑠)) |
69 | 59, 68 | mpbird 256 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → 𝑠 ∈ 𝐶) |
70 | 21, 69 | impbida 798 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
71 | 70 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
72 | 71 | ex 413 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
73 | 72 | exlimdv 1936 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
74 | 17 | mrcf 17318 |
. . . . . . . 8
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
75 | 74, 39 | fssd 6618 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋) |
76 | 17 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐹 ∈ V |
77 | | feq1 6581 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋 ↔ 𝐹:𝒫 𝑋⟶𝒫 𝑋)) |
78 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) |
79 | 78 | sseq1d 3952 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑧) ⊆ 𝑡 ↔ (𝐹‘𝑧) ⊆ 𝑡)) |
80 | 79 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑧) ⊆ 𝑡)) |
81 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
82 | 81 | sseq1d 3952 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → ((𝐹‘𝑧) ⊆ 𝑡 ↔ (𝐹‘𝑦) ⊆ 𝑡)) |
83 | 82 | cbvralvw 3383 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
(𝒫 𝑡 ∩
Fin)(𝐹‘𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡) |
84 | 80, 83 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡)) |
85 | 84 | bibi2d 343 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡) ↔ (𝑡 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡))) |
86 | 85 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡))) |
87 | | sseq2 3947 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑠 → ((𝐹‘𝑦) ⊆ 𝑡 ↔ (𝐹‘𝑦) ⊆ 𝑠)) |
88 | 62, 87 | raleqbidv 3336 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑠 → (∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
89 | 60, 88 | bibi12d 346 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑠 → ((𝑡 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡) ↔ (𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
90 | 89 | cbvralvw 3383 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) |
91 | 86, 90 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
92 | 77, 91 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)))) |
93 | 76, 92 | spcev 3545 |
. . . . . . 7
⊢ ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) |
94 | 75, 93 | sylan 580 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡))) |
95 | 94 | ex 413 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)))) |
96 | 73, 95 | impbid 211 |
. . . 4
⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓‘𝑧) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
97 | 11, 96 | bitrid 282 |
. . 3
⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
98 | 97 | pm5.32i 575 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |
99 | 1, 98 | bitri 274 |
1
⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) |