Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs2 Structured version   Visualization version   GIF version

Theorem isacs2 16916
 Description: In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
Distinct variable groups:   𝐶,𝑠,𝑦   𝐹,𝑠,𝑦   𝑋,𝑠,𝑦

Proof of Theorem isacs2
Dummy variables 𝑓 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacs 16914 . 2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
2 iunss 4960 . . . . . . . . 9 ( 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)
3 ffun 6510 . . . . . . . . . . 11 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → Fun 𝑓)
4 funiunfv 6999 . . . . . . . . . . 11 (Fun 𝑓 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) = (𝑓 “ (𝒫 𝑡 ∩ Fin)))
53, 4syl 17 . . . . . . . . . 10 (𝑓:𝒫 𝑋⟶𝒫 𝑋 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) = (𝑓 “ (𝒫 𝑡 ∩ Fin)))
65sseq1d 3996 . . . . . . . . 9 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ( 𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
72, 6syl5rbbr 288 . . . . . . . 8 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
87bibi2d 345 . . . . . . 7 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → ((𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
98ralbidv 3195 . . . . . 6 (𝑓:𝒫 𝑋⟶𝒫 𝑋 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
109pm5.32i 577 . . . . 5 ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
1110exbii 1842 . . . 4 (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
12 simpll 765 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
13 elinel1 4170 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
1413elpwid 4551 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
1514adantl 484 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
16 simplr 767 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠𝐶)
17 isacs2.f . . . . . . . . . . . . 13 𝐹 = (mrCls‘𝐶)
1817mrcsscl 16883 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑠𝑠𝐶) → (𝐹𝑦) ⊆ 𝑠)
1912, 15, 16, 18syl3anc 1366 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ⊆ 𝑠)
2019ralrimiva 3180 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)
2120ad4ant14 750 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑠𝐶) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)
22 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑓𝑧) = (𝑓𝑦))
2322sseq1d 3996 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → ((𝑓𝑧) ⊆ (𝐹𝑦) ↔ (𝑓𝑦) ⊆ (𝐹𝑦)))
24 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ∈ (Moore‘𝑋))
2514adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
26 elpwi 4549 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
2726ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑠𝑋)
2825, 27sstrd 3975 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑋)
2917mrccl 16874 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ 𝐶)
3024, 28, 29syl2anc 586 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ∈ 𝐶)
31 eleq1 2898 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐹𝑦) → (𝑡𝐶 ↔ (𝐹𝑦) ∈ 𝐶))
32 pweq 4540 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐹𝑦) → 𝒫 𝑡 = 𝒫 (𝐹𝑦))
3332ineq1d 4186 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐹𝑦) → (𝒫 𝑡 ∩ Fin) = (𝒫 (𝐹𝑦) ∩ Fin))
34 sseq2 3991 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐹𝑦) → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝑓𝑧) ⊆ (𝐹𝑦)))
3533, 34raleqbidv 3400 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐹𝑦) → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦)))
3631, 35bibi12d 348 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐹𝑦) → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ((𝐹𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦))))
37 simprr 771 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
3837ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
39 mresspw 16855 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
4039ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝐶 ⊆ 𝒫 𝑋)
4140, 30sseldd 3966 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝐹𝑦) ∈ 𝒫 𝑋)
4236, 38, 41rspcdva 3623 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹𝑦) ∈ 𝐶 ↔ ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦)))
4330, 42mpbid 234 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∀𝑧 ∈ (𝒫 (𝐹𝑦) ∩ Fin)(𝑓𝑧) ⊆ (𝐹𝑦))
4424, 17, 28mrcssidd 16888 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ⊆ (𝐹𝑦))
45 vex 3496 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4645elpw 4544 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ 𝒫 (𝐹𝑦) ↔ 𝑦 ⊆ (𝐹𝑦))
4744, 46sylibr 236 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ 𝒫 (𝐹𝑦))
48 elinel2 4171 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
4948adantl 484 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
5047, 49elind 4169 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ (𝒫 (𝐹𝑦) ∩ Fin))
5123, 43, 50rspcdva 3623 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (𝑓𝑦) ⊆ (𝐹𝑦))
52 sstr2 3972 . . . . . . . . . . . . . 14 ((𝑓𝑦) ⊆ (𝐹𝑦) → ((𝐹𝑦) ⊆ 𝑠 → (𝑓𝑦) ⊆ 𝑠))
5351, 52syl 17 . . . . . . . . . . . . 13 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((𝐹𝑦) ⊆ 𝑠 → (𝑓𝑦) ⊆ 𝑠))
5453ralimdva 3175 . . . . . . . . . . . 12 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠 → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠))
5554imp 409 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠)
56 fveq2 6663 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
5756sseq1d 3996 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑓𝑦) ⊆ 𝑠 ↔ (𝑓𝑧) ⊆ 𝑠))
5857cbvralvw 3448 . . . . . . . . . . 11 (∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑦) ⊆ 𝑠 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)
5955, 58sylib 220 . . . . . . . . . 10 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)
60 eleq1 2898 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (𝑡𝐶𝑠𝐶))
61 pweq 4540 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → 𝒫 𝑡 = 𝒫 𝑠)
6261ineq1d 4186 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝒫 𝑡 ∩ Fin) = (𝒫 𝑠 ∩ Fin))
63 sseq2 3991 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝑓𝑧) ⊆ 𝑠))
6462, 63raleqbidv 3400 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠))
6560, 64bibi12d 348 . . . . . . . . . . 11 (𝑡 = 𝑠 → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ (𝑠𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠)))
6637ad2antrr 724 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))
67 simplr 767 . . . . . . . . . . 11 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → 𝑠 ∈ 𝒫 𝑋)
6865, 66, 67rspcdva 3623 . . . . . . . . . 10 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → (𝑠𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑠 ∩ Fin)(𝑓𝑧) ⊆ 𝑠))
6959, 68mpbird 259 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → 𝑠𝐶)
7021, 69impbida 799 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
7170ralrimiva 3180 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
7271ex 415 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
7372exlimdv 1928 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
7417mrcf 16872 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7574, 39fssd 6521 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
7617fvexi 6677 . . . . . . . 8 𝐹 ∈ V
77 feq1 6488 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
78 fveq1 6662 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
7978sseq1d 3996 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → ((𝑓𝑧) ⊆ 𝑡 ↔ (𝐹𝑧) ⊆ 𝑡))
8079ralbidv 3195 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑧) ⊆ 𝑡))
81 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
8281sseq1d 3996 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐹𝑧) ⊆ 𝑡 ↔ (𝐹𝑦) ⊆ 𝑡))
8382cbvralvw 3448 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)
8480, 83syl6bb 289 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡))
8584bibi2d 345 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ (𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)))
8685ralbidv 3195 . . . . . . . . . 10 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡)))
87 sseq2 3991 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝐹𝑦) ⊆ 𝑡 ↔ (𝐹𝑦) ⊆ 𝑠))
8862, 87raleqbidv 3400 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
8960, 88bibi12d 348 . . . . . . . . . . 11 (𝑡 = 𝑠 → ((𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡) ↔ (𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9089cbvralvw 3448 . . . . . . . . . 10 (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑡 ∩ Fin)(𝐹𝑦) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))
9186, 90syl6bb 289 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9277, 91anbi12d 632 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠))))
9376, 92spcev 3605 . . . . . . 7 ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
9475, 93sylan 582 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)))
9594ex 415 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡))))
9673, 95impbid 214 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 ↔ ∀𝑧 ∈ (𝒫 𝑡 ∩ Fin)(𝑓𝑧) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9711, 96syl5bb 285 . . 3 (𝐶 ∈ (Moore‘𝑋) → (∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
9897pm5.32i 577 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡𝐶 (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
991, 98bitri 277 1 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹𝑦) ⊆ 𝑠)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1531  ∃wex 1774   ∈ wcel 2108  ∀wral 3136   ∩ cin 3933   ⊆ wss 3934  𝒫 cpw 4537  ∪ cuni 4830  ∪ ciun 4910   “ cima 5551  Fun wfun 6342  ⟶wf 6344  ‘cfv 6348  Fincfn 8501  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-mre 16849  df-mrc 16850  df-acs 16852 This theorem is referenced by:  acsfiel  16917  isacs5  17774
 Copyright terms: Public domain W3C validator