MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmre Structured version   Visualization version   GIF version

Theorem acsmre 17695
Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
acsmre (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))

Proof of Theorem acsmre
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacs 17694 . 2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
21simplbi 497 1 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2108  wral 3061  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907  cima 5688  wf 6557  cfv 6561  Fincfn 8985  Moorecmre 17625  ACScacs 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-acs 17632
This theorem is referenced by:  acsfiel  17697  acsmred  17699  mreacs  17701  isacs3lem  18587  symggen  19488  odf1o1  19590  lsmmod  19693  gsumzsplit  19945  gsumzoppg  19962  gsumpt  19980  dmdprdd  20019  dprdfeq0  20042  dprdspan  20047  dprdres  20048  dprdss  20049  subgdmdprd  20054  subgdprd  20055  dprdsn  20056  dprd2dlem1  20061  dprd2da  20062  dmdprdsplit2lem  20065  ablfac1b  20090  pgpfac1lem1  20094  pgpfac1lem3  20097  pgpfac1lem4  20098  pgpfac1lem5  20099  pgpfaclem2  20102  isnacs2  42717  proot1mul  43206  proot1hash  43207
  Copyright terms: Public domain W3C validator