| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmre | Structured version Visualization version GIF version | ||
| Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsmre | ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacs 17663 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 “ cima 5657 ⟶wf 6527 ‘cfv 6531 Fincfn 8959 Moorecmre 17594 ACScacs 17597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-acs 17601 |
| This theorem is referenced by: acsfiel 17666 acsmred 17668 mreacs 17670 isacs3lem 18552 symggen 19451 odf1o1 19553 lsmmod 19656 gsumzsplit 19908 gsumzoppg 19925 gsumpt 19943 dmdprdd 19982 dprdfeq0 20005 dprdspan 20010 dprdres 20011 dprdss 20012 subgdmdprd 20017 subgdprd 20018 dprdsn 20019 dprd2dlem1 20024 dprd2da 20025 dmdprdsplit2lem 20028 ablfac1b 20053 pgpfac1lem1 20057 pgpfac1lem3 20060 pgpfac1lem4 20061 pgpfac1lem5 20062 pgpfaclem2 20065 isnacs2 42729 proot1mul 43218 proot1hash 43219 |
| Copyright terms: Public domain | W3C validator |