MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmre Structured version   Visualization version   GIF version

Theorem acsmre 16915
Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
acsmre (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))

Proof of Theorem acsmre
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacs 16914 . 2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
21simplbi 498 1 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wex 1773  wcel 2107  wral 3142  cin 3938  wss 3939  𝒫 cpw 4541   cuni 4836  cima 5556  wf 6347  cfv 6351  Fincfn 8501  Moorecmre 16845  ACScacs 16848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fv 6359  df-acs 16852
This theorem is referenced by:  acsfiel  16917  acsmred  16919  mreacs  16921  isacs3lem  17768  symggen  18520  odf1o1  18619  lsmmod  18723  gsumzsplit  18969  gsumzoppg  18986  gsumpt  19004  dmdprdd  19043  dprdfeq0  19066  dprdspan  19071  dprdres  19072  dprdss  19073  subgdmdprd  19078  subgdprd  19079  dprdsn  19080  dprd2dlem1  19085  dprd2da  19086  dmdprdsplit2lem  19089  ablfac1b  19114  pgpfac1lem1  19118  pgpfac1lem3  19121  pgpfac1lem4  19122  pgpfac1lem5  19123  pgpfaclem2  19126  isnacs2  39170  proot1mul  39666  proot1hash  39667
  Copyright terms: Public domain W3C validator