MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmre Structured version   Visualization version   GIF version

Theorem acsmre 17697
Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
acsmre (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))

Proof of Theorem acsmre
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacs 17696 . 2 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠𝐶 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))))
21simplbi 497 1 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1776  wcel 2106  wral 3059  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912  cima 5692  wf 6559  cfv 6563  Fincfn 8984  Moorecmre 17627  ACScacs 17630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-acs 17634
This theorem is referenced by:  acsfiel  17699  acsmred  17701  mreacs  17703  isacs3lem  18600  symggen  19503  odf1o1  19605  lsmmod  19708  gsumzsplit  19960  gsumzoppg  19977  gsumpt  19995  dmdprdd  20034  dprdfeq0  20057  dprdspan  20062  dprdres  20063  dprdss  20064  subgdmdprd  20069  subgdprd  20070  dprdsn  20071  dprd2dlem1  20076  dprd2da  20077  dmdprdsplit2lem  20080  ablfac1b  20105  pgpfac1lem1  20109  pgpfac1lem3  20112  pgpfac1lem4  20113  pgpfac1lem5  20114  pgpfaclem2  20117  isnacs2  42694  proot1mul  43183  proot1hash  43184
  Copyright terms: Public domain W3C validator