| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmre | Structured version Visualization version GIF version | ||
| Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsmre | ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacs 17557 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 “ cima 5617 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 Moorecmre 17484 ACScacs 17487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-acs 17491 |
| This theorem is referenced by: acsfiel 17560 acsmred 17562 mreacs 17564 isacs3lem 18448 symggen 19382 odf1o1 19484 lsmmod 19587 gsumzsplit 19839 gsumzoppg 19856 gsumpt 19874 dmdprdd 19913 dprdfeq0 19936 dprdspan 19941 dprdres 19942 dprdss 19943 subgdmdprd 19948 subgdprd 19949 dprdsn 19950 dprd2dlem1 19955 dprd2da 19956 dmdprdsplit2lem 19959 ablfac1b 19984 pgpfac1lem1 19988 pgpfac1lem3 19991 pgpfac1lem4 19992 pgpfac1lem5 19993 pgpfaclem2 19996 isnacs2 42747 proot1mul 43235 proot1hash 43236 |
| Copyright terms: Public domain | W3C validator |