Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsmre | Structured version Visualization version GIF version |
Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsmre | ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs 17360 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 “ cima 5592 ⟶wf 6429 ‘cfv 6433 Fincfn 8733 Moorecmre 17291 ACScacs 17294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-acs 17298 |
This theorem is referenced by: acsfiel 17363 acsmred 17365 mreacs 17367 isacs3lem 18260 symggen 19078 odf1o1 19177 lsmmod 19281 gsumzsplit 19528 gsumzoppg 19545 gsumpt 19563 dmdprdd 19602 dprdfeq0 19625 dprdspan 19630 dprdres 19631 dprdss 19632 subgdmdprd 19637 subgdprd 19638 dprdsn 19639 dprd2dlem1 19644 dprd2da 19645 dmdprdsplit2lem 19648 ablfac1b 19673 pgpfac1lem1 19677 pgpfac1lem3 19680 pgpfac1lem4 19681 pgpfac1lem5 19682 pgpfaclem2 19685 isnacs2 40528 proot1mul 41024 proot1hash 41025 |
Copyright terms: Public domain | W3C validator |