Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsmre | Structured version Visualization version GIF version |
Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsmre | ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs 16980 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | |
2 | 1 | simplbi 501 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∃wex 1781 ∈ wcel 2111 ∀wral 3070 ∩ cin 3857 ⊆ wss 3858 𝒫 cpw 4494 ∪ cuni 4798 “ cima 5527 ⟶wf 6331 ‘cfv 6335 Fincfn 8527 Moorecmre 16911 ACScacs 16914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-acs 16918 |
This theorem is referenced by: acsfiel 16983 acsmred 16985 mreacs 16987 isacs3lem 17842 symggen 18665 odf1o1 18764 lsmmod 18868 gsumzsplit 19115 gsumzoppg 19132 gsumpt 19150 dmdprdd 19189 dprdfeq0 19212 dprdspan 19217 dprdres 19218 dprdss 19219 subgdmdprd 19224 subgdprd 19225 dprdsn 19226 dprd2dlem1 19231 dprd2da 19232 dmdprdsplit2lem 19235 ablfac1b 19260 pgpfac1lem1 19264 pgpfac1lem3 19267 pgpfac1lem4 19268 pgpfac1lem5 19269 pgpfaclem2 19272 isnacs2 40020 proot1mul 40516 proot1hash 40517 |
Copyright terms: Public domain | W3C validator |