MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldpropd Structured version   Visualization version   GIF version

Theorem fldpropd 20686
Description: If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
drngpropd.1 (𝜑𝐵 = (Base‘𝐾))
drngpropd.2 (𝜑𝐵 = (Base‘𝐿))
drngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
drngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
fldpropd (𝜑 → (𝐾 ∈ Field ↔ 𝐿 ∈ Field))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem fldpropd
StepHypRef Expression
1 drngpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 drngpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 drngpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 drngpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4drngpropd 20685 . . 3 (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
61, 2, 3, 4crngpropd 20208 . . 3 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
75, 6anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing) ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing)))
8 isfld 20656 . 2 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
9 isfld 20656 . 2 (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
107, 8, 93bitr4g 314 1 (𝜑 → (𝐾 ∈ Field ↔ 𝐿 ∈ Field))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  CRingccrg 20153  DivRingcdr 20645  Fieldcfield 20646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-cmn 19695  df-mgp 20060  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-drng 20647  df-field 20648
This theorem is referenced by:  fldextrspunfld  33687
  Copyright terms: Public domain W3C validator