Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhrhm Structured version   Visualization version   GIF version

Theorem qqhrhm 31839
Description: The ℚHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
qqhrhm.1 𝑄 = (ℂflds ℚ)
Assertion
Ref Expression
qqhrhm ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅))

Proof of Theorem qqhrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhrhm.1 . . 3 𝑄 = (ℂflds ℚ)
21qrngbas 26672 . 2 ℚ = (Base‘𝑄)
31qrng1 26675 . 2 1 = (1r𝑄)
4 eqid 2738 . 2 (1r𝑅) = (1r𝑅)
5 qex 12630 . . 3 ℚ ∈ V
6 cnfldmul 20516 . . . 4 · = (.r‘ℂfld)
71, 6ressmulr 16943 . . 3 (ℚ ∈ V → · = (.r𝑄))
85, 7ax-mp 5 . 2 · = (.r𝑄)
9 eqid 2738 . 2 (.r𝑅) = (.r𝑅)
101qdrng 26673 . . 3 𝑄 ∈ DivRing
11 drngring 19913 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1210, 11mp1i 13 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑄 ∈ Ring)
13 isfld 19915 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1413simplbi 497 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
1514adantr 480 . . 3 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑅 ∈ DivRing)
16 drngring 19913 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
1715, 16syl 17 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
18 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
19 qqhval2.1 . . . 4 / = (/r𝑅)
20 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
2118, 19, 20qqh1 31835 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
2214, 21sylan 579 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
23 eqid 2738 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
24 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
2513simprbi 496 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
2625ad2antrr 722 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ CRing)
2720zrhrhm 20625 . . . . . . 7 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
28 zringbas 20588 . . . . . . . 8 ℤ = (Base‘ℤring)
2928, 18rhmf 19885 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
3017, 27, 293syl 18 . . . . . 6 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝐿:ℤ⟶𝐵)
3130adantr 480 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿:ℤ⟶𝐵)
32 qnumcl 16372 . . . . . 6 (𝑥 ∈ ℚ → (numer‘𝑥) ∈ ℤ)
3332ad2antrl 724 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℤ)
3431, 33ffvelrnd 6944 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(numer‘𝑥)) ∈ 𝐵)
3514ad2antrr 722 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ DivRing)
36 simplr 765 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (chr‘𝑅) = 0)
3735, 36jca 511 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0))
38 qdencl 16373 . . . . . . 7 (𝑥 ∈ ℚ → (denom‘𝑥) ∈ ℕ)
3938ad2antrl 724 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℕ)
4039nnzd 12354 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℤ)
4139nnne0d 11953 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ≠ 0)
42 eqid 2738 . . . . . 6 (0g𝑅) = (0g𝑅)
4318, 20, 42elzrhunit 31829 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
4437, 40, 41, 43syl12anc 833 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
45 qnumcl 16372 . . . . . 6 (𝑦 ∈ ℚ → (numer‘𝑦) ∈ ℤ)
4645ad2antll 725 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℤ)
4731, 46ffvelrnd 6944 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(numer‘𝑦)) ∈ 𝐵)
48 qdencl 16373 . . . . . . 7 (𝑦 ∈ ℚ → (denom‘𝑦) ∈ ℕ)
4948ad2antll 725 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℕ)
5049nnzd 12354 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℤ)
5149nnne0d 11953 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ≠ 0)
5218, 20, 42elzrhunit 31829 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5337, 50, 51, 52syl12anc 833 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5418, 23, 24, 19, 9, 26, 34, 44, 47, 53rdivmuldivd 31390 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
55 qeqnumdivden 16378 . . . . . . 7 (𝑥 ∈ ℚ → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
5655fveq2d 6760 . . . . . 6 (𝑥 ∈ ℚ → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
5756ad2antrl 724 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
5818, 19, 20qqhvq 31837 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
5937, 33, 40, 41, 58syl13anc 1370 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
6057, 59eqtrd 2778 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
61 qeqnumdivden 16378 . . . . . . 7 (𝑦 ∈ ℚ → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
6261fveq2d 6760 . . . . . 6 (𝑦 ∈ ℚ → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
6362ad2antll 725 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
6418, 19, 20qqhvq 31837 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6537, 46, 50, 51, 64syl13anc 1370 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6663, 65eqtrd 2778 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6760, 66oveq12d 7273 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(.r𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))))
6855ad2antrl 724 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
6961ad2antll 725 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
7068, 69oveq12d 7273 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦))))
7133zcnd 12356 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℂ)
7240zcnd 12356 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℂ)
7346zcnd 12356 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℂ)
7450zcnd 12356 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℂ)
7571, 72, 73, 74, 41, 51divmuldivd 11722 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦))) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))
7670, 75eqtrd 2778 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))
7776fveq2d 6760 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))))
7833, 46zmulcld 12361 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (numer‘𝑦)) ∈ ℤ)
7940, 50zmulcld 12361 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ)
8072, 74, 41, 51mulne0d 11557 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)
8118, 19, 20qqhvq 31837 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (((numer‘𝑥) · (numer‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8237, 78, 79, 80, 81syl13anc 1370 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8335, 16syl 17 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ Ring)
8483, 27syl 17 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring RingHom 𝑅))
85 zringmulr 20591 . . . . . . 7 · = (.r‘ℤring)
8628, 85, 9rhmmul 19886 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (numer‘𝑥) ∈ ℤ ∧ (numer‘𝑦) ∈ ℤ) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))))
8784, 33, 46, 86syl3anc 1369 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))))
8828, 85, 9rhmmul 19886 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
8984, 40, 50, 88syl3anc 1369 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
9087, 89oveq12d 7273 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
9177, 82, 903eqtrd 2782 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
9254, 67, 913eqtr4rd 2789 . 2 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(.r𝑅)((ℚHom‘𝑅)‘𝑦)))
93 cnfldadd 20515 . . . 4 + = (+g‘ℂfld)
941, 93ressplusg 16926 . . 3 (ℚ ∈ V → + = (+g𝑄))
955, 94ax-mp 5 . 2 + = (+g𝑄)
9618, 19, 20qqhf 31836 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
9714, 96sylan 579 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
9833, 50zmulcld 12361 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ)
9931, 98ffvelrnd 6944 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵)
10046, 40zmulcld 12361 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ)
10131, 100ffvelrnd 6944 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵)
10223, 9unitmulcl 19821 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
10383, 44, 53, 102syl3anc 1369 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
10489, 103eqeltrd 2839 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))
10518, 23, 24, 19dvrdir 31389 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵 ∧ (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵 ∧ (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10683, 99, 101, 104, 105syl13anc 1370 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10768, 69oveq12d 7273 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))))
10871, 72, 73, 74, 41, 51divadddivd 11725 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
109107, 108eqtrd 2778 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
110109fveq2d 6760 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))))
11198, 100zaddcld 12359 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ)
11218, 19, 20qqhvq 31837 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
11337, 111, 79, 80, 112syl13anc 1370 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
114 rhmghm 19884 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
11584, 114syl 17 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
116 zringplusg 20589 . . . . . . 7 + = (+g‘ℤring)
11728, 116, 24ghmlin 18754 . . . . . 6 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → (𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))))
118117oveq1d 7270 . . . . 5 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
119115, 98, 100, 118syl3anc 1369 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
120110, 113, 1193eqtrd 2782 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12123, 28, 19, 85rhmdvd 31422 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12284, 33, 40, 50, 44, 53, 121syl132anc 1386 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12357, 59, 1223eqtrd 2782 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12423, 28, 19, 85rhmdvd 31422 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
12584, 46, 50, 40, 53, 44, 124syl132anc 1386 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
12672, 74mulcomd 10927 . . . . . . . 8 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) = ((denom‘𝑦) · (denom‘𝑥)))
127126fveq2d 6760 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = (𝐿‘((denom‘𝑦) · (denom‘𝑥))))
128127oveq2d 7271 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
129125, 65, 1283eqtr4d 2788 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
13063, 129eqtrd 2778 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
131123, 130oveq12d 7273 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
132106, 120, 1313eqtr4d 2788 . 2 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)))
1332, 3, 4, 8, 9, 12, 17, 22, 92, 18, 95, 24, 97, 132isrhmd 19888 1 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  cn 11903  cz 12249  cq 12617  numercnumer 16365  denomcdenom 16366  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   GrpHom cghm 18746  1rcur 19652  Ringcrg 19698  CRingccrg 19699  Unitcui 19796  /rcdvr 19839   RingHom crh 19871  DivRingcdr 19906  Fieldcfield 19907  fldccnfld 20510  ringzring 20582  ℤRHomczrh 20613  chrcchr 20615  ℚHomcqqh 31822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-od 19051  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-chr 20619  df-qqh 31823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator