Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhrhm Structured version   Visualization version   GIF version

Theorem qqhrhm 33433
Description: The β„šHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐡 = (Baseβ€˜π‘…)
qqhval2.1 / = (/rβ€˜π‘…)
qqhval2.2 𝐿 = (β„€RHomβ€˜π‘…)
qqhrhm.1 𝑄 = (β„‚fld β†Ύs β„š)
Assertion
Ref Expression
qqhrhm ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) ∈ (𝑄 RingHom 𝑅))

Proof of Theorem qqhrhm
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhrhm.1 . . 3 𝑄 = (β„‚fld β†Ύs β„š)
21qrngbas 27465 . 2 β„š = (Baseβ€˜π‘„)
31qrng1 27468 . 2 1 = (1rβ€˜π‘„)
4 eqid 2731 . 2 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5 qex 12952 . . 3 β„š ∈ V
6 cnfldmul 21239 . . . 4 Β· = (.rβ€˜β„‚fld)
71, 6ressmulr 17259 . . 3 (β„š ∈ V β†’ Β· = (.rβ€˜π‘„))
85, 7ax-mp 5 . 2 Β· = (.rβ€˜π‘„)
9 eqid 2731 . 2 (.rβ€˜π‘…) = (.rβ€˜π‘…)
101qdrng 27466 . . 3 𝑄 ∈ DivRing
11 drngring 20590 . . 3 (𝑄 ∈ DivRing β†’ 𝑄 ∈ Ring)
1210, 11mp1i 13 . 2 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ 𝑄 ∈ Ring)
13 isfld 20594 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1413simplbi 497 . . . 4 (𝑅 ∈ Field β†’ 𝑅 ∈ DivRing)
1514adantr 480 . . 3 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ 𝑅 ∈ DivRing)
16 drngring 20590 . . 3 (𝑅 ∈ DivRing β†’ 𝑅 ∈ Ring)
1715, 16syl 17 . 2 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ 𝑅 ∈ Ring)
18 qqhval2.0 . . . 4 𝐡 = (Baseβ€˜π‘…)
19 qqhval2.1 . . . 4 / = (/rβ€˜π‘…)
20 qqhval2.2 . . . 4 𝐿 = (β„€RHomβ€˜π‘…)
2118, 19, 20qqh1 33429 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ ((β„šHomβ€˜π‘…)β€˜1) = (1rβ€˜π‘…))
2214, 21sylan 579 . 2 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ ((β„šHomβ€˜π‘…)β€˜1) = (1rβ€˜π‘…))
23 eqid 2731 . . . 4 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
24 eqid 2731 . . . 4 (+gβ€˜π‘…) = (+gβ€˜π‘…)
2513simprbi 496 . . . . 5 (𝑅 ∈ Field β†’ 𝑅 ∈ CRing)
2625ad2antrr 723 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝑅 ∈ CRing)
2720zrhrhm 21371 . . . . . . 7 (𝑅 ∈ Ring β†’ 𝐿 ∈ (β„€ring RingHom 𝑅))
28 zringbas 21313 . . . . . . . 8 β„€ = (Baseβ€˜β„€ring)
2928, 18rhmf 20383 . . . . . . 7 (𝐿 ∈ (β„€ring RingHom 𝑅) β†’ 𝐿:β„€βŸΆπ΅)
3017, 27, 293syl 18 . . . . . 6 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ 𝐿:β„€βŸΆπ΅)
3130adantr 480 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝐿:β„€βŸΆπ΅)
32 qnumcl 16683 . . . . . 6 (π‘₯ ∈ β„š β†’ (numerβ€˜π‘₯) ∈ β„€)
3332ad2antrl 725 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (numerβ€˜π‘₯) ∈ β„€)
3431, 33ffvelcdmd 7087 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜(numerβ€˜π‘₯)) ∈ 𝐡)
3514ad2antrr 723 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝑅 ∈ DivRing)
36 simplr 766 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (chrβ€˜π‘…) = 0)
3735, 36jca 511 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0))
38 qdencl 16684 . . . . . . 7 (π‘₯ ∈ β„š β†’ (denomβ€˜π‘₯) ∈ β„•)
3938ad2antrl 725 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘₯) ∈ β„•)
4039nnzd 12592 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘₯) ∈ β„€)
4139nnne0d 12269 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘₯) β‰  0)
42 eqid 2731 . . . . . 6 (0gβ€˜π‘…) = (0gβ€˜π‘…)
4318, 20, 42elzrhunit 33423 . . . . 5 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ ((denomβ€˜π‘₯) ∈ β„€ ∧ (denomβ€˜π‘₯) β‰  0)) β†’ (πΏβ€˜(denomβ€˜π‘₯)) ∈ (Unitβ€˜π‘…))
4437, 40, 41, 43syl12anc 834 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜(denomβ€˜π‘₯)) ∈ (Unitβ€˜π‘…))
45 qnumcl 16683 . . . . . 6 (𝑦 ∈ β„š β†’ (numerβ€˜π‘¦) ∈ β„€)
4645ad2antll 726 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (numerβ€˜π‘¦) ∈ β„€)
4731, 46ffvelcdmd 7087 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜(numerβ€˜π‘¦)) ∈ 𝐡)
48 qdencl 16684 . . . . . . 7 (𝑦 ∈ β„š β†’ (denomβ€˜π‘¦) ∈ β„•)
4948ad2antll 726 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘¦) ∈ β„•)
5049nnzd 12592 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘¦) ∈ β„€)
5149nnne0d 12269 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘¦) β‰  0)
5218, 20, 42elzrhunit 33423 . . . . 5 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ ((denomβ€˜π‘¦) ∈ β„€ ∧ (denomβ€˜π‘¦) β‰  0)) β†’ (πΏβ€˜(denomβ€˜π‘¦)) ∈ (Unitβ€˜π‘…))
5337, 50, 51, 52syl12anc 834 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜(denomβ€˜π‘¦)) ∈ (Unitβ€˜π‘…))
5418, 23, 24, 19, 9, 26, 34, 44, 47, 53rdivmuldivd 20311 . . 3 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯)))(.rβ€˜π‘…)((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦)))) = (((πΏβ€˜(numerβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(numerβ€˜π‘¦))) / ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦)))))
55 qeqnumdivden 16689 . . . . . . 7 (π‘₯ ∈ β„š β†’ π‘₯ = ((numerβ€˜π‘₯) / (denomβ€˜π‘₯)))
5655fveq2d 6895 . . . . . 6 (π‘₯ ∈ β„š β†’ ((β„šHomβ€˜π‘…)β€˜π‘₯) = ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘₯) / (denomβ€˜π‘₯))))
5756ad2antrl 725 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜π‘₯) = ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘₯) / (denomβ€˜π‘₯))))
5818, 19, 20qqhvq 33431 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ ((numerβ€˜π‘₯) ∈ β„€ ∧ (denomβ€˜π‘₯) ∈ β„€ ∧ (denomβ€˜π‘₯) β‰  0)) β†’ ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘₯) / (denomβ€˜π‘₯))) = ((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯))))
5937, 33, 40, 41, 58syl13anc 1371 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘₯) / (denomβ€˜π‘₯))) = ((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯))))
6057, 59eqtrd 2771 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜π‘₯) = ((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯))))
61 qeqnumdivden 16689 . . . . . . 7 (𝑦 ∈ β„š β†’ 𝑦 = ((numerβ€˜π‘¦) / (denomβ€˜π‘¦)))
6261fveq2d 6895 . . . . . 6 (𝑦 ∈ β„š β†’ ((β„šHomβ€˜π‘…)β€˜π‘¦) = ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘¦) / (denomβ€˜π‘¦))))
6362ad2antll 726 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜π‘¦) = ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘¦) / (denomβ€˜π‘¦))))
6418, 19, 20qqhvq 33431 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ ((numerβ€˜π‘¦) ∈ β„€ ∧ (denomβ€˜π‘¦) ∈ β„€ ∧ (denomβ€˜π‘¦) β‰  0)) β†’ ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘¦) / (denomβ€˜π‘¦))) = ((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦))))
6537, 46, 50, 51, 64syl13anc 1371 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘¦) / (denomβ€˜π‘¦))) = ((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦))))
6663, 65eqtrd 2771 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜π‘¦) = ((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦))))
6760, 66oveq12d 7430 . . 3 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((β„šHomβ€˜π‘…)β€˜π‘₯)(.rβ€˜π‘…)((β„šHomβ€˜π‘…)β€˜π‘¦)) = (((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯)))(.rβ€˜π‘…)((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦)))))
6855ad2antrl 725 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ π‘₯ = ((numerβ€˜π‘₯) / (denomβ€˜π‘₯)))
6961ad2antll 726 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝑦 = ((numerβ€˜π‘¦) / (denomβ€˜π‘¦)))
7068, 69oveq12d 7430 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (π‘₯ Β· 𝑦) = (((numerβ€˜π‘₯) / (denomβ€˜π‘₯)) Β· ((numerβ€˜π‘¦) / (denomβ€˜π‘¦))))
7133zcnd 12674 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (numerβ€˜π‘₯) ∈ β„‚)
7240zcnd 12674 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘₯) ∈ β„‚)
7346zcnd 12674 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (numerβ€˜π‘¦) ∈ β„‚)
7450zcnd 12674 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (denomβ€˜π‘¦) ∈ β„‚)
7571, 72, 73, 74, 41, 51divmuldivd 12038 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((numerβ€˜π‘₯) / (denomβ€˜π‘₯)) Β· ((numerβ€˜π‘¦) / (denomβ€˜π‘¦))) = (((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))
7670, 75eqtrd 2771 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (π‘₯ Β· 𝑦) = (((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))
7776fveq2d 6895 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(π‘₯ Β· 𝑦)) = ((β„šHomβ€˜π‘…)β€˜(((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
7833, 46zmulcld 12679 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) ∈ β„€)
7940, 50zmulcld 12679 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) ∈ β„€)
8072, 74, 41, 51mulne0d 11873 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) β‰  0)
8118, 19, 20qqhvq 33431 . . . . 5 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ (((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) ∈ β„€ ∧ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) ∈ β„€ ∧ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) β‰  0)) β†’ ((β„šHomβ€˜π‘…)β€˜(((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = ((πΏβ€˜((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
8237, 78, 79, 80, 81syl13anc 1371 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦)) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = ((πΏβ€˜((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
8335, 16syl 17 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝑅 ∈ Ring)
8483, 27syl 17 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝐿 ∈ (β„€ring RingHom 𝑅))
85 zringmulr 21317 . . . . . . 7 Β· = (.rβ€˜β„€ring)
8628, 85, 9rhmmul 20384 . . . . . 6 ((𝐿 ∈ (β„€ring RingHom 𝑅) ∧ (numerβ€˜π‘₯) ∈ β„€ ∧ (numerβ€˜π‘¦) ∈ β„€) β†’ (πΏβ€˜((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦))) = ((πΏβ€˜(numerβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(numerβ€˜π‘¦))))
8784, 33, 46, 86syl3anc 1370 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦))) = ((πΏβ€˜(numerβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(numerβ€˜π‘¦))))
8828, 85, 9rhmmul 20384 . . . . . 6 ((𝐿 ∈ (β„€ring RingHom 𝑅) ∧ (denomβ€˜π‘₯) ∈ β„€ ∧ (denomβ€˜π‘¦) ∈ β„€) β†’ (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))) = ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦))))
8984, 40, 50, 88syl3anc 1370 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))) = ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦))))
9087, 89oveq12d 7430 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((πΏβ€˜((numerβ€˜π‘₯) Β· (numerβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = (((πΏβ€˜(numerβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(numerβ€˜π‘¦))) / ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦)))))
9177, 82, 903eqtrd 2775 . . 3 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(π‘₯ Β· 𝑦)) = (((πΏβ€˜(numerβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(numerβ€˜π‘¦))) / ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦)))))
9254, 67, 913eqtr4rd 2782 . 2 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(π‘₯ Β· 𝑦)) = (((β„šHomβ€˜π‘…)β€˜π‘₯)(.rβ€˜π‘…)((β„šHomβ€˜π‘…)β€˜π‘¦)))
93 cnfldadd 21238 . . . 4 + = (+gβ€˜β„‚fld)
941, 93ressplusg 17242 . . 3 (β„š ∈ V β†’ + = (+gβ€˜π‘„))
955, 94ax-mp 5 . 2 + = (+gβ€˜π‘„)
9618, 19, 20qqhf 33430 . . 3 ((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…):β„šβŸΆπ΅)
9714, 96sylan 579 . 2 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…):β„šβŸΆπ΅)
9833, 50zmulcld 12679 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) ∈ β„€)
9931, 98ffvelcdmd 7087 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) ∈ 𝐡)
10046, 40zmulcld 12679 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)) ∈ β„€)
10131, 100ffvelcdmd 7087 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) ∈ 𝐡)
10223, 9unitmulcl 20278 . . . . . 6 ((𝑅 ∈ Ring ∧ (πΏβ€˜(denomβ€˜π‘₯)) ∈ (Unitβ€˜π‘…) ∧ (πΏβ€˜(denomβ€˜π‘¦)) ∈ (Unitβ€˜π‘…)) β†’ ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦))) ∈ (Unitβ€˜π‘…))
10383, 44, 53, 102syl3anc 1370 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((πΏβ€˜(denomβ€˜π‘₯))(.rβ€˜π‘…)(πΏβ€˜(denomβ€˜π‘¦))) ∈ (Unitβ€˜π‘…))
10489, 103eqeltrd 2832 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))) ∈ (Unitβ€˜π‘…))
10518, 23, 24, 19dvrdir 20310 . . . 4 ((𝑅 ∈ Ring ∧ ((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) ∈ 𝐡 ∧ (πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) ∈ 𝐡 ∧ (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))) ∈ (Unitβ€˜π‘…))) β†’ (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)))(+gβ€˜π‘…)(πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))(+gβ€˜π‘…)((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))))
10683, 99, 101, 104, 105syl13anc 1371 . . 3 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)))(+gβ€˜π‘…)(πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))(+gβ€˜π‘…)((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))))
10768, 69oveq12d 7430 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (π‘₯ + 𝑦) = (((numerβ€˜π‘₯) / (denomβ€˜π‘₯)) + ((numerβ€˜π‘¦) / (denomβ€˜π‘¦))))
10871, 72, 73, 74, 41, 51divadddivd 12041 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((numerβ€˜π‘₯) / (denomβ€˜π‘₯)) + ((numerβ€˜π‘¦) / (denomβ€˜π‘¦))) = ((((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))
109107, 108eqtrd 2771 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (π‘₯ + 𝑦) = ((((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))
110109fveq2d 6895 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(π‘₯ + 𝑦)) = ((β„šHomβ€˜π‘…)β€˜((((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
11198, 100zaddcld 12677 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) ∈ β„€)
11218, 19, 20qqhvq 33431 . . . . 5 (((𝑅 ∈ DivRing ∧ (chrβ€˜π‘…) = 0) ∧ ((((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) ∈ β„€ ∧ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) ∈ β„€ ∧ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) β‰  0)) β†’ ((β„šHomβ€˜π‘…)β€˜((((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = ((πΏβ€˜(((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
11337, 111, 79, 80, 112syl13anc 1371 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜((((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = ((πΏβ€˜(((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
114 rhmghm 20382 . . . . . 6 (𝐿 ∈ (β„€ring RingHom 𝑅) β†’ 𝐿 ∈ (β„€ring GrpHom 𝑅))
11584, 114syl 17 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ 𝐿 ∈ (β„€ring GrpHom 𝑅))
116 zringplusg 21314 . . . . . . 7 + = (+gβ€˜β„€ring)
11728, 116, 24ghmlin 19142 . . . . . 6 ((𝐿 ∈ (β„€ring GrpHom 𝑅) ∧ ((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) ∈ β„€ ∧ ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)) ∈ β„€) β†’ (πΏβ€˜(((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) = ((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)))(+gβ€˜π‘…)(πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))))
118117oveq1d 7427 . . . . 5 ((𝐿 ∈ (β„€ring GrpHom 𝑅) ∧ ((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) ∈ β„€ ∧ ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)) ∈ β„€) β†’ ((πΏβ€˜(((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)))(+gβ€˜π‘…)(πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
119115, 98, 100, 118syl3anc 1370 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((πΏβ€˜(((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)) + ((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)))(+gβ€˜π‘…)(πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
120110, 113, 1193eqtrd 2775 . . 3 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(π‘₯ + 𝑦)) = (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦)))(+gβ€˜π‘…)(πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯)))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
12123, 28, 19, 85rhmdvd 32872 . . . . . 6 ((𝐿 ∈ (β„€ring RingHom 𝑅) ∧ ((numerβ€˜π‘₯) ∈ β„€ ∧ (denomβ€˜π‘₯) ∈ β„€ ∧ (denomβ€˜π‘¦) ∈ β„€) ∧ ((πΏβ€˜(denomβ€˜π‘₯)) ∈ (Unitβ€˜π‘…) ∧ (πΏβ€˜(denomβ€˜π‘¦)) ∈ (Unitβ€˜π‘…))) β†’ ((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯))) = ((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
12284, 33, 40, 50, 44, 53, 121syl132anc 1387 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((πΏβ€˜(numerβ€˜π‘₯)) / (πΏβ€˜(denomβ€˜π‘₯))) = ((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
12357, 59, 1223eqtrd 2775 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜π‘₯) = ((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
12423, 28, 19, 85rhmdvd 32872 . . . . . . 7 ((𝐿 ∈ (β„€ring RingHom 𝑅) ∧ ((numerβ€˜π‘¦) ∈ β„€ ∧ (denomβ€˜π‘¦) ∈ β„€ ∧ (denomβ€˜π‘₯) ∈ β„€) ∧ ((πΏβ€˜(denomβ€˜π‘¦)) ∈ (Unitβ€˜π‘…) ∧ (πΏβ€˜(denomβ€˜π‘₯)) ∈ (Unitβ€˜π‘…))) β†’ ((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦))) = ((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘¦) Β· (denomβ€˜π‘₯)))))
12584, 46, 50, 40, 53, 44, 124syl132anc 1387 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((πΏβ€˜(numerβ€˜π‘¦)) / (πΏβ€˜(denomβ€˜π‘¦))) = ((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘¦) Β· (denomβ€˜π‘₯)))))
12672, 74mulcomd 11242 . . . . . . . 8 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)) = ((denomβ€˜π‘¦) Β· (denomβ€˜π‘₯)))
127126fveq2d 6895 . . . . . . 7 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))) = (πΏβ€˜((denomβ€˜π‘¦) Β· (denomβ€˜π‘₯))))
128127oveq2d 7428 . . . . . 6 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))) = ((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘¦) Β· (denomβ€˜π‘₯)))))
129125, 65, 1283eqtr4d 2781 . . . . 5 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜((numerβ€˜π‘¦) / (denomβ€˜π‘¦))) = ((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
13063, 129eqtrd 2771 . . . 4 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜π‘¦) = ((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦)))))
131123, 130oveq12d 7430 . . 3 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ (((β„šHomβ€˜π‘…)β€˜π‘₯)(+gβ€˜π‘…)((β„šHomβ€˜π‘…)β€˜π‘¦)) = (((πΏβ€˜((numerβ€˜π‘₯) Β· (denomβ€˜π‘¦))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))(+gβ€˜π‘…)((πΏβ€˜((numerβ€˜π‘¦) Β· (denomβ€˜π‘₯))) / (πΏβ€˜((denomβ€˜π‘₯) Β· (denomβ€˜π‘¦))))))
132106, 120, 1313eqtr4d 2781 . 2 (((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) ∧ (π‘₯ ∈ β„š ∧ 𝑦 ∈ β„š)) β†’ ((β„šHomβ€˜π‘…)β€˜(π‘₯ + 𝑦)) = (((β„šHomβ€˜π‘…)β€˜π‘₯)(+gβ€˜π‘…)((β„šHomβ€˜π‘…)β€˜π‘¦)))
1332, 3, 4, 8, 9, 12, 17, 22, 92, 18, 95, 24, 97, 132isrhmd 20386 1 ((𝑅 ∈ Field ∧ (chrβ€˜π‘…) = 0) β†’ (β„šHomβ€˜π‘…) ∈ (𝑄 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  Vcvv 3473  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117   + caddc 11119   Β· cmul 11121   / cdiv 11878  β„•cn 12219  β„€cz 12565  β„šcq 12939  numercnumer 16676  denomcdenom 16677  Basecbs 17151   β†Ύs cress 17180  +gcplusg 17204  .rcmulr 17205  0gc0g 17392   GrpHom cghm 19134  1rcur 20082  Ringcrg 20134  CRingccrg 20135  Unitcui 20253  /rcdvr 20298   RingHom crh 20367  DivRingcdr 20583  Fieldcfield 20584  β„‚fldccnfld 21233  β„€ringczring 21306  β„€RHomczrh 21359  chrcchr 21361  β„šHomcqqh 33416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-fz 13492  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-dvds 16205  df-gcd 16443  df-numer 16678  df-denom 16679  df-gz 16870  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-ghm 19135  df-od 19444  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-cring 20137  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-dvr 20299  df-rhm 20370  df-subrng 20442  df-subrg 20467  df-drng 20585  df-field 20586  df-cnfld 21234  df-zring 21307  df-zrh 21363  df-chr 21365  df-qqh 33417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator