Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhrhm Structured version   Visualization version   GIF version

Theorem qqhrhm 31225
Description: The ℚHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
qqhrhm.1 𝑄 = (ℂflds ℚ)
Assertion
Ref Expression
qqhrhm ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅))

Proof of Theorem qqhrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhrhm.1 . . 3 𝑄 = (ℂflds ℚ)
21qrngbas 26189 . 2 ℚ = (Base‘𝑄)
31qrng1 26192 . 2 1 = (1r𝑄)
4 eqid 2821 . 2 (1r𝑅) = (1r𝑅)
5 qex 12354 . . 3 ℚ ∈ V
6 cnfldmul 20545 . . . 4 · = (.r‘ℂfld)
71, 6ressmulr 16619 . . 3 (ℚ ∈ V → · = (.r𝑄))
85, 7ax-mp 5 . 2 · = (.r𝑄)
9 eqid 2821 . 2 (.r𝑅) = (.r𝑅)
101qdrng 26190 . . 3 𝑄 ∈ DivRing
11 drngring 19503 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1210, 11mp1i 13 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑄 ∈ Ring)
13 isfld 19505 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1413simplbi 500 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
1514adantr 483 . . 3 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑅 ∈ DivRing)
16 drngring 19503 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
1715, 16syl 17 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
18 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
19 qqhval2.1 . . . 4 / = (/r𝑅)
20 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
2118, 19, 20qqh1 31221 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
2214, 21sylan 582 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
23 eqid 2821 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
24 eqid 2821 . . . 4 (+g𝑅) = (+g𝑅)
2513simprbi 499 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
2625ad2antrr 724 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ CRing)
2720zrhrhm 20653 . . . . . . 7 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
28 zringbas 20617 . . . . . . . 8 ℤ = (Base‘ℤring)
2928, 18rhmf 19472 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
3017, 27, 293syl 18 . . . . . 6 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝐿:ℤ⟶𝐵)
3130adantr 483 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿:ℤ⟶𝐵)
32 qnumcl 16074 . . . . . 6 (𝑥 ∈ ℚ → (numer‘𝑥) ∈ ℤ)
3332ad2antrl 726 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℤ)
3431, 33ffvelrnd 6846 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(numer‘𝑥)) ∈ 𝐵)
3514ad2antrr 724 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ DivRing)
36 simplr 767 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (chr‘𝑅) = 0)
3735, 36jca 514 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0))
38 qdencl 16075 . . . . . . 7 (𝑥 ∈ ℚ → (denom‘𝑥) ∈ ℕ)
3938ad2antrl 726 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℕ)
4039nnzd 12080 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℤ)
4139nnne0d 11681 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ≠ 0)
42 eqid 2821 . . . . . 6 (0g𝑅) = (0g𝑅)
4318, 20, 42elzrhunit 31215 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
4437, 40, 41, 43syl12anc 834 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
45 qnumcl 16074 . . . . . 6 (𝑦 ∈ ℚ → (numer‘𝑦) ∈ ℤ)
4645ad2antll 727 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℤ)
4731, 46ffvelrnd 6846 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(numer‘𝑦)) ∈ 𝐵)
48 qdencl 16075 . . . . . . 7 (𝑦 ∈ ℚ → (denom‘𝑦) ∈ ℕ)
4948ad2antll 727 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℕ)
5049nnzd 12080 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℤ)
5149nnne0d 11681 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ≠ 0)
5218, 20, 42elzrhunit 31215 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5337, 50, 51, 52syl12anc 834 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5418, 23, 24, 19, 9, 26, 34, 44, 47, 53rdivmuldivd 30857 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
55 qeqnumdivden 16080 . . . . . . 7 (𝑥 ∈ ℚ → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
5655fveq2d 6668 . . . . . 6 (𝑥 ∈ ℚ → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
5756ad2antrl 726 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
5818, 19, 20qqhvq 31223 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
5937, 33, 40, 41, 58syl13anc 1368 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
6057, 59eqtrd 2856 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
61 qeqnumdivden 16080 . . . . . . 7 (𝑦 ∈ ℚ → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
6261fveq2d 6668 . . . . . 6 (𝑦 ∈ ℚ → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
6362ad2antll 727 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
6418, 19, 20qqhvq 31223 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6537, 46, 50, 51, 64syl13anc 1368 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6663, 65eqtrd 2856 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6760, 66oveq12d 7168 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(.r𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))))
6855ad2antrl 726 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
6961ad2antll 727 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
7068, 69oveq12d 7168 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦))))
7133zcnd 12082 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℂ)
7240zcnd 12082 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℂ)
7346zcnd 12082 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℂ)
7450zcnd 12082 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℂ)
7571, 72, 73, 74, 41, 51divmuldivd 11451 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦))) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))
7670, 75eqtrd 2856 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))
7776fveq2d 6668 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))))
7833, 46zmulcld 12087 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (numer‘𝑦)) ∈ ℤ)
7940, 50zmulcld 12087 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ)
8072, 74, 41, 51mulne0d 11286 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)
8118, 19, 20qqhvq 31223 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (((numer‘𝑥) · (numer‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8237, 78, 79, 80, 81syl13anc 1368 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8335, 16syl 17 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ Ring)
8483, 27syl 17 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring RingHom 𝑅))
85 zringmulr 20620 . . . . . . 7 · = (.r‘ℤring)
8628, 85, 9rhmmul 19473 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (numer‘𝑥) ∈ ℤ ∧ (numer‘𝑦) ∈ ℤ) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))))
8784, 33, 46, 86syl3anc 1367 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))))
8828, 85, 9rhmmul 19473 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
8984, 40, 50, 88syl3anc 1367 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
9087, 89oveq12d 7168 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
9177, 82, 903eqtrd 2860 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
9254, 67, 913eqtr4rd 2867 . 2 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(.r𝑅)((ℚHom‘𝑅)‘𝑦)))
93 cnfldadd 20544 . . . 4 + = (+g‘ℂfld)
941, 93ressplusg 16606 . . 3 (ℚ ∈ V → + = (+g𝑄))
955, 94ax-mp 5 . 2 + = (+g𝑄)
9618, 19, 20qqhf 31222 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
9714, 96sylan 582 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
9833, 50zmulcld 12087 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ)
9931, 98ffvelrnd 6846 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵)
10046, 40zmulcld 12087 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ)
10131, 100ffvelrnd 6846 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵)
10223, 9unitmulcl 19408 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
10383, 44, 53, 102syl3anc 1367 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
10489, 103eqeltrd 2913 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))
10518, 23, 24, 19dvrdir 30856 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵 ∧ (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵 ∧ (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10683, 99, 101, 104, 105syl13anc 1368 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10768, 69oveq12d 7168 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))))
10871, 72, 73, 74, 41, 51divadddivd 11454 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
109107, 108eqtrd 2856 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
110109fveq2d 6668 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))))
11198, 100zaddcld 12085 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ)
11218, 19, 20qqhvq 31223 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
11337, 111, 79, 80, 112syl13anc 1368 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
114 rhmghm 19471 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
11584, 114syl 17 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
116 zringplusg 20618 . . . . . . 7 + = (+g‘ℤring)
11728, 116, 24ghmlin 18357 . . . . . 6 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → (𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))))
118117oveq1d 7165 . . . . 5 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
119115, 98, 100, 118syl3anc 1367 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
120110, 113, 1193eqtrd 2860 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12123, 28, 19, 85rhmdvd 30889 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12284, 33, 40, 50, 44, 53, 121syl132anc 1384 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12357, 59, 1223eqtrd 2860 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12423, 28, 19, 85rhmdvd 30889 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
12584, 46, 50, 40, 53, 44, 124syl132anc 1384 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
12672, 74mulcomd 10656 . . . . . . . 8 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) = ((denom‘𝑦) · (denom‘𝑥)))
127126fveq2d 6668 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = (𝐿‘((denom‘𝑦) · (denom‘𝑥))))
128127oveq2d 7166 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
129125, 65, 1283eqtr4d 2866 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
13063, 129eqtrd 2856 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
131123, 130oveq12d 7168 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
132106, 120, 1313eqtr4d 2866 . 2 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)))
1332, 3, 4, 8, 9, 12, 17, 22, 92, 18, 95, 24, 97, 132isrhmd 19475 1 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  wf 6345  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   / cdiv 11291  cn 11632  cz 11975  cq 12342  numercnumer 16067  denomcdenom 16068  Basecbs 16477  s cress 16478  +gcplusg 16559  .rcmulr 16560  0gc0g 16707   GrpHom cghm 18349  1rcur 19245  Ringcrg 19291  CRingccrg 19292  Unitcui 19383  /rcdvr 19426   RingHom crh 19458  DivRingcdr 19496  Fieldcfield 19497  fldccnfld 20539  ringzring 20611  ℤRHomczrh 20641  chrcchr 20643  ℚHomcqqh 31208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-numer 16069  df-denom 16070  df-gz 16260  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-od 18650  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-chr 20647  df-qqh 31209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator