Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhrhm Structured version   Visualization version   GIF version

Theorem qqhrhm 31238
Description: The ℚHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
qqhrhm.1 𝑄 = (ℂflds ℚ)
Assertion
Ref Expression
qqhrhm ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅))

Proof of Theorem qqhrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhrhm.1 . . 3 𝑄 = (ℂflds ℚ)
21qrngbas 26182 . 2 ℚ = (Base‘𝑄)
31qrng1 26185 . 2 1 = (1r𝑄)
4 eqid 2820 . 2 (1r𝑅) = (1r𝑅)
5 qex 12339 . . 3 ℚ ∈ V
6 cnfldmul 20527 . . . 4 · = (.r‘ℂfld)
71, 6ressmulr 16604 . . 3 (ℚ ∈ V → · = (.r𝑄))
85, 7ax-mp 5 . 2 · = (.r𝑄)
9 eqid 2820 . 2 (.r𝑅) = (.r𝑅)
101qdrng 26183 . . 3 𝑄 ∈ DivRing
11 drngring 19485 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1210, 11mp1i 13 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑄 ∈ Ring)
13 isfld 19487 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
1413simplbi 500 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
1514adantr 483 . . 3 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑅 ∈ DivRing)
16 drngring 19485 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
1715, 16syl 17 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
18 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
19 qqhval2.1 . . . 4 / = (/r𝑅)
20 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
2118, 19, 20qqh1 31234 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
2214, 21sylan 582 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
23 eqid 2820 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
24 eqid 2820 . . . 4 (+g𝑅) = (+g𝑅)
2513simprbi 499 . . . . 5 (𝑅 ∈ Field → 𝑅 ∈ CRing)
2625ad2antrr 724 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ CRing)
2720zrhrhm 20635 . . . . . . 7 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
28 zringbas 20599 . . . . . . . 8 ℤ = (Base‘ℤring)
2928, 18rhmf 19457 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
3017, 27, 293syl 18 . . . . . 6 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → 𝐿:ℤ⟶𝐵)
3130adantr 483 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿:ℤ⟶𝐵)
32 qnumcl 16058 . . . . . 6 (𝑥 ∈ ℚ → (numer‘𝑥) ∈ ℤ)
3332ad2antrl 726 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℤ)
3431, 33ffvelrnd 6828 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(numer‘𝑥)) ∈ 𝐵)
3514ad2antrr 724 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ DivRing)
36 simplr 767 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (chr‘𝑅) = 0)
3735, 36jca 514 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0))
38 qdencl 16059 . . . . . . 7 (𝑥 ∈ ℚ → (denom‘𝑥) ∈ ℕ)
3938ad2antrl 726 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℕ)
4039nnzd 12065 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℤ)
4139nnne0d 11666 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ≠ 0)
42 eqid 2820 . . . . . 6 (0g𝑅) = (0g𝑅)
4318, 20, 42elzrhunit 31228 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
4437, 40, 41, 43syl12anc 834 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
45 qnumcl 16058 . . . . . 6 (𝑦 ∈ ℚ → (numer‘𝑦) ∈ ℤ)
4645ad2antll 727 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℤ)
4731, 46ffvelrnd 6828 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(numer‘𝑦)) ∈ 𝐵)
48 qdencl 16059 . . . . . . 7 (𝑦 ∈ ℚ → (denom‘𝑦) ∈ ℕ)
4948ad2antll 727 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℕ)
5049nnzd 12065 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℤ)
5149nnne0d 11666 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ≠ 0)
5218, 20, 42elzrhunit 31228 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5337, 50, 51, 52syl12anc 834 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5418, 23, 24, 19, 9, 26, 34, 44, 47, 53rdivmuldivd 30870 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
55 qeqnumdivden 16064 . . . . . . 7 (𝑥 ∈ ℚ → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
5655fveq2d 6650 . . . . . 6 (𝑥 ∈ ℚ → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
5756ad2antrl 726 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
5818, 19, 20qqhvq 31236 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
5937, 33, 40, 41, 58syl13anc 1368 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
6057, 59eqtrd 2855 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
61 qeqnumdivden 16064 . . . . . . 7 (𝑦 ∈ ℚ → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
6261fveq2d 6650 . . . . . 6 (𝑦 ∈ ℚ → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
6362ad2antll 727 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
6418, 19, 20qqhvq 31236 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6537, 46, 50, 51, 64syl13anc 1368 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6663, 65eqtrd 2855 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
6760, 66oveq12d 7151 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(.r𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))))
6855ad2antrl 726 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
6961ad2antll 727 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
7068, 69oveq12d 7151 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦))))
7133zcnd 12067 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℂ)
7240zcnd 12067 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℂ)
7346zcnd 12067 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℂ)
7450zcnd 12067 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℂ)
7571, 72, 73, 74, 41, 51divmuldivd 11435 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦))) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))
7670, 75eqtrd 2855 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))
7776fveq2d 6650 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))))
7833, 46zmulcld 12072 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (numer‘𝑦)) ∈ ℤ)
7940, 50zmulcld 12072 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ)
8072, 74, 41, 51mulne0d 11270 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)
8118, 19, 20qqhvq 31236 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (((numer‘𝑥) · (numer‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8237, 78, 79, 80, 81syl13anc 1368 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8335, 16syl 17 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ Ring)
8483, 27syl 17 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring RingHom 𝑅))
85 zringmulr 20602 . . . . . . 7 · = (.r‘ℤring)
8628, 85, 9rhmmul 19458 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (numer‘𝑥) ∈ ℤ ∧ (numer‘𝑦) ∈ ℤ) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))))
8784, 33, 46, 86syl3anc 1367 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))))
8828, 85, 9rhmmul 19458 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
8984, 40, 50, 88syl3anc 1367 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
9087, 89oveq12d 7151 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
9177, 82, 903eqtrd 2859 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((𝐿‘(numer‘𝑥))(.r𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦)))))
9254, 67, 913eqtr4rd 2866 . 2 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(.r𝑅)((ℚHom‘𝑅)‘𝑦)))
93 cnfldadd 20526 . . . 4 + = (+g‘ℂfld)
941, 93ressplusg 16591 . . 3 (ℚ ∈ V → + = (+g𝑄))
955, 94ax-mp 5 . 2 + = (+g𝑄)
9618, 19, 20qqhf 31235 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
9714, 96sylan 582 . 2 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
9833, 50zmulcld 12072 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ)
9931, 98ffvelrnd 6828 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵)
10046, 40zmulcld 12072 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ)
10131, 100ffvelrnd 6828 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵)
10223, 9unitmulcl 19393 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
10383, 44, 53, 102syl3anc 1367 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
10489, 103eqeltrd 2911 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))
10518, 23, 24, 19dvrdir 30869 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵 ∧ (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵 ∧ (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10683, 99, 101, 104, 105syl13anc 1368 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10768, 69oveq12d 7151 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))))
10871, 72, 73, 74, 41, 51divadddivd 11438 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
109107, 108eqtrd 2855 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
110109fveq2d 6650 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))))
11198, 100zaddcld 12070 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ)
11218, 19, 20qqhvq 31236 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
11337, 111, 79, 80, 112syl13anc 1368 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
114 rhmghm 19456 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
11584, 114syl 17 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
116 zringplusg 20600 . . . . . . 7 + = (+g‘ℤring)
11728, 116, 24ghmlin 18342 . . . . . 6 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → (𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))))
118117oveq1d 7148 . . . . 5 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
119115, 98, 100, 118syl3anc 1367 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
120110, 113, 1193eqtrd 2859 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12123, 28, 19, 85rhmdvd 30902 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12284, 33, 40, 50, 44, 53, 121syl132anc 1384 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12357, 59, 1223eqtrd 2859 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
12423, 28, 19, 85rhmdvd 30902 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
12584, 46, 50, 40, 53, 44, 124syl132anc 1384 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
12672, 74mulcomd 10640 . . . . . . . 8 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) = ((denom‘𝑦) · (denom‘𝑥)))
127126fveq2d 6650 . . . . . . 7 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = (𝐿‘((denom‘𝑦) · (denom‘𝑥))))
128127oveq2d 7149 . . . . . 6 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
129125, 65, 1283eqtr4d 2865 . . . . 5 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
13063, 129eqtrd 2855 . . . 4 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
131123, 130oveq12d 7151 . . 3 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
132106, 120, 1313eqtr4d 2865 . 2 (((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)))
1332, 3, 4, 8, 9, 12, 17, 22, 92, 18, 95, 24, 97, 132isrhmd 19460 1 ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3006  Vcvv 3473  wf 6327  cfv 6331  (class class class)co 7133  0cc0 10515  1c1 10516   + caddc 10518   · cmul 10520   / cdiv 11275  cn 11616  cz 11960  cq 12327  numercnumer 16051  denomcdenom 16052  Basecbs 16462  s cress 16463  +gcplusg 16544  .rcmulr 16545  0gc0g 16692   GrpHom cghm 18334  1rcur 19230  Ringcrg 19276  CRingccrg 19277  Unitcui 19368  /rcdvr 19411   RingHom crh 19443  DivRingcdr 19478  Fieldcfield 19479  fldccnfld 20521  ringzring 20593  ℤRHomczrh 20623  chrcchr 20625  ℚHomcqqh 31221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-fz 12877  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-dvds 15588  df-gcd 15822  df-numer 16053  df-denom 16054  df-gz 16244  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-subg 18255  df-ghm 18335  df-od 18635  df-cmn 18887  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-rnghom 19446  df-drng 19480  df-field 19481  df-subrg 19509  df-cnfld 20522  df-zring 20594  df-zrh 20627  df-chr 20629  df-qqh 31222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator