Step | Hyp | Ref
| Expression |
1 | | qqhrhm.1 |
. . 3
⊢ 𝑄 = (ℂfld
↾s ℚ) |
2 | 1 | qrngbas 26672 |
. 2
⊢ ℚ =
(Base‘𝑄) |
3 | 1 | qrng1 26675 |
. 2
⊢ 1 =
(1r‘𝑄) |
4 | | eqid 2738 |
. 2
⊢
(1r‘𝑅) = (1r‘𝑅) |
5 | | qex 12630 |
. . 3
⊢ ℚ
∈ V |
6 | | cnfldmul 20516 |
. . . 4
⊢ ·
= (.r‘ℂfld) |
7 | 1, 6 | ressmulr 16943 |
. . 3
⊢ (ℚ
∈ V → · = (.r‘𝑄)) |
8 | 5, 7 | ax-mp 5 |
. 2
⊢ ·
= (.r‘𝑄) |
9 | | eqid 2738 |
. 2
⊢
(.r‘𝑅) = (.r‘𝑅) |
10 | 1 | qdrng 26673 |
. . 3
⊢ 𝑄 ∈ DivRing |
11 | | drngring 19913 |
. . 3
⊢ (𝑄 ∈ DivRing → 𝑄 ∈ Ring) |
12 | 10, 11 | mp1i 13 |
. 2
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
𝑄 ∈
Ring) |
13 | | isfld 19915 |
. . . . 5
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
14 | 13 | simplbi 497 |
. . . 4
⊢ (𝑅 ∈ Field → 𝑅 ∈
DivRing) |
15 | 14 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
𝑅 ∈
DivRing) |
16 | | drngring 19913 |
. . 3
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
17 | 15, 16 | syl 17 |
. 2
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
𝑅 ∈
Ring) |
18 | | qqhval2.0 |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
19 | | qqhval2.1 |
. . . 4
⊢ / =
(/r‘𝑅) |
20 | | qqhval2.2 |
. . . 4
⊢ 𝐿 = (ℤRHom‘𝑅) |
21 | 18, 19, 20 | qqh1 31835 |
. . 3
⊢ ((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) →
((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
22 | 14, 21 | sylan 579 |
. 2
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
23 | | eqid 2738 |
. . . 4
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
24 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
25 | 13 | simprbi 496 |
. . . . 5
⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
26 | 25 | ad2antrr 722 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝑅 ∈
CRing) |
27 | 20 | zrhrhm 20625 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑅)) |
28 | | zringbas 20588 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
29 | 28, 18 | rhmf 19885 |
. . . . . . 7
⊢ (𝐿 ∈ (ℤring
RingHom 𝑅) → 𝐿:ℤ⟶𝐵) |
30 | 17, 27, 29 | 3syl 18 |
. . . . . 6
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
𝐿:ℤ⟶𝐵) |
31 | 30 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝐿:ℤ⟶𝐵) |
32 | | qnumcl 16372 |
. . . . . 6
⊢ (𝑥 ∈ ℚ →
(numer‘𝑥) ∈
ℤ) |
33 | 32 | ad2antrl 724 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(numer‘𝑥) ∈
ℤ) |
34 | 31, 33 | ffvelrnd 6944 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘(numer‘𝑥)) ∈ 𝐵) |
35 | 14 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝑅 ∈
DivRing) |
36 | | simplr 765 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(chr‘𝑅) =
0) |
37 | 35, 36 | jca 511 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝑅 ∈ DivRing ∧
(chr‘𝑅) =
0)) |
38 | | qdencl 16373 |
. . . . . . 7
⊢ (𝑥 ∈ ℚ →
(denom‘𝑥) ∈
ℕ) |
39 | 38 | ad2antrl 724 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑥) ∈
ℕ) |
40 | 39 | nnzd 12354 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑥) ∈
ℤ) |
41 | 39 | nnne0d 11953 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑥) ≠
0) |
42 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
43 | 18, 20, 42 | elzrhunit 31829 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) ∧
((denom‘𝑥) ∈
ℤ ∧ (denom‘𝑥) ≠ 0)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅)) |
44 | 37, 40, 41, 43 | syl12anc 833 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅)) |
45 | | qnumcl 16372 |
. . . . . 6
⊢ (𝑦 ∈ ℚ →
(numer‘𝑦) ∈
ℤ) |
46 | 45 | ad2antll 725 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(numer‘𝑦) ∈
ℤ) |
47 | 31, 46 | ffvelrnd 6944 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘(numer‘𝑦)) ∈ 𝐵) |
48 | | qdencl 16373 |
. . . . . . 7
⊢ (𝑦 ∈ ℚ →
(denom‘𝑦) ∈
ℕ) |
49 | 48 | ad2antll 725 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑦) ∈
ℕ) |
50 | 49 | nnzd 12354 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑦) ∈
ℤ) |
51 | 49 | nnne0d 11953 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑦) ≠
0) |
52 | 18, 20, 42 | elzrhunit 31829 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) ∧
((denom‘𝑦) ∈
ℤ ∧ (denom‘𝑦) ≠ 0)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) |
53 | 37, 50, 51, 52 | syl12anc 833 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) |
54 | 18, 23, 24, 19, 9, 26, 34, 44, 47, 53 | rdivmuldivd 31390 |
. . 3
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r‘𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r‘𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦))))) |
55 | | qeqnumdivden 16378 |
. . . . . . 7
⊢ (𝑥 ∈ ℚ → 𝑥 = ((numer‘𝑥) / (denom‘𝑥))) |
56 | 55 | fveq2d 6760 |
. . . . . 6
⊢ (𝑥 ∈ ℚ →
((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥)))) |
57 | 56 | ad2antrl 724 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥)))) |
58 | 18, 19, 20 | qqhvq 31837 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) ∧
((numer‘𝑥) ∈
ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) →
((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))) |
59 | 37, 33, 40, 41, 58 | syl13anc 1370 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))) |
60 | 57, 59 | eqtrd 2778 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘𝑥) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))) |
61 | | qeqnumdivden 16378 |
. . . . . . 7
⊢ (𝑦 ∈ ℚ → 𝑦 = ((numer‘𝑦) / (denom‘𝑦))) |
62 | 61 | fveq2d 6760 |
. . . . . 6
⊢ (𝑦 ∈ ℚ →
((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦)))) |
63 | 62 | ad2antll 725 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦)))) |
64 | 18, 19, 20 | qqhvq 31837 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) ∧
((numer‘𝑦) ∈
ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) →
((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) |
65 | 37, 46, 50, 51, 64 | syl13anc 1370 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) |
66 | 63, 65 | eqtrd 2778 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘𝑦) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦)))) |
67 | 60, 66 | oveq12d 7273 |
. . 3
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((ℚHom‘𝑅)‘𝑥)(.r‘𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥)))(.r‘𝑅)((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))) |
68 | 55 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝑥 = ((numer‘𝑥) / (denom‘𝑥))) |
69 | 61 | ad2antll 725 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝑦 = ((numer‘𝑦) / (denom‘𝑦))) |
70 | 68, 69 | oveq12d 7273 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝑥 · 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) · ((numer‘𝑦) / (denom‘𝑦)))) |
71 | 33 | zcnd 12356 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(numer‘𝑥) ∈
ℂ) |
72 | 40 | zcnd 12356 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑥) ∈
ℂ) |
73 | 46 | zcnd 12356 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(numer‘𝑦) ∈
ℂ) |
74 | 50 | zcnd 12356 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(denom‘𝑦) ∈
ℂ) |
75 | 71, 72, 73, 74, 41, 51 | divmuldivd 11722 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((numer‘𝑥) /
(denom‘𝑥)) ·
((numer‘𝑦) /
(denom‘𝑦))) =
(((numer‘𝑥) ·
(numer‘𝑦)) /
((denom‘𝑥) ·
(denom‘𝑦)))) |
76 | 70, 75 | eqtrd 2778 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝑥 · 𝑦) = (((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) |
77 | 76 | fveq2d 6760 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = ((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦))))) |
78 | 33, 46 | zmulcld 12361 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((numer‘𝑥) ·
(numer‘𝑦)) ∈
ℤ) |
79 | 40, 50 | zmulcld 12361 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((denom‘𝑥) ·
(denom‘𝑦)) ∈
ℤ) |
80 | 72, 74, 41, 51 | mulne0d 11557 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((denom‘𝑥) ·
(denom‘𝑦)) ≠
0) |
81 | 18, 19, 20 | qqhvq 31837 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) ∧
(((numer‘𝑥) ·
(numer‘𝑦)) ∈
ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) →
((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
82 | 37, 78, 79, 80, 81 | syl13anc 1370 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(((numer‘𝑥) · (numer‘𝑦)) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
83 | 35, 16 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝑅 ∈
Ring) |
84 | 83, 27 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝐿 ∈
(ℤring RingHom 𝑅)) |
85 | | zringmulr 20591 |
. . . . . . 7
⊢ ·
= (.r‘ℤring) |
86 | 28, 85, 9 | rhmmul 19886 |
. . . . . 6
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑅) ∧
(numer‘𝑥) ∈
ℤ ∧ (numer‘𝑦) ∈ ℤ) → (𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r‘𝑅)(𝐿‘(numer‘𝑦)))) |
87 | 84, 33, 46, 86 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘((numer‘𝑥) · (numer‘𝑦))) = ((𝐿‘(numer‘𝑥))(.r‘𝑅)(𝐿‘(numer‘𝑦)))) |
88 | 28, 85, 9 | rhmmul 19886 |
. . . . . 6
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑅) ∧
(denom‘𝑥) ∈
ℤ ∧ (denom‘𝑦) ∈ ℤ) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦)))) |
89 | 84, 40, 50, 88 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦)))) |
90 | 87, 89 | oveq12d 7273 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((𝐿‘((numer‘𝑥) · (numer‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘(numer‘𝑥))(.r‘𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦))))) |
91 | 77, 82, 90 | 3eqtrd 2782 |
. . 3
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((𝐿‘(numer‘𝑥))(.r‘𝑅)(𝐿‘(numer‘𝑦))) / ((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦))))) |
92 | 54, 67, 91 | 3eqtr4rd 2789 |
. 2
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(.r‘𝑅)((ℚHom‘𝑅)‘𝑦))) |
93 | | cnfldadd 20515 |
. . . 4
⊢ + =
(+g‘ℂfld) |
94 | 1, 93 | ressplusg 16926 |
. . 3
⊢ (ℚ
∈ V → + = (+g‘𝑄)) |
95 | 5, 94 | ax-mp 5 |
. 2
⊢ + =
(+g‘𝑄) |
96 | 18, 19, 20 | qqhf 31836 |
. . 3
⊢ ((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅):ℚ⟶𝐵) |
97 | 14, 96 | sylan 579 |
. 2
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅):ℚ⟶𝐵) |
98 | 33, 50 | zmulcld 12361 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((numer‘𝑥) ·
(denom‘𝑦)) ∈
ℤ) |
99 | 31, 98 | ffvelrnd 6944 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵) |
100 | 46, 40 | zmulcld 12361 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((numer‘𝑦) ·
(denom‘𝑥)) ∈
ℤ) |
101 | 31, 100 | ffvelrnd 6944 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵) |
102 | 23, 9 | unitmulcl 19821 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) → ((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅)) |
103 | 83, 44, 53, 102 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((𝐿‘(denom‘𝑥))(.r‘𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅)) |
104 | 89, 103 | eqeltrd 2839 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅)) |
105 | 18, 23, 24, 19 | dvrdir 31389 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵 ∧ (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵 ∧ (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g‘𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g‘𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))) |
106 | 83, 99, 101, 104, 105 | syl13anc 1370 |
. . 3
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g‘𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g‘𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))) |
107 | 68, 69 | oveq12d 7273 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝑥 + 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦)))) |
108 | 71, 72, 73, 74, 41, 51 | divadddivd 11725 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((numer‘𝑥) /
(denom‘𝑥)) +
((numer‘𝑦) /
(denom‘𝑦))) =
((((numer‘𝑥) ·
(denom‘𝑦)) +
((numer‘𝑦) ·
(denom‘𝑥))) /
((denom‘𝑥) ·
(denom‘𝑦)))) |
109 | 107, 108 | eqtrd 2778 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝑥 + 𝑦) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) |
110 | 109 | fveq2d 6760 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))) |
111 | 98, 100 | zaddcld 12359 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((numer‘𝑥) ·
(denom‘𝑦)) +
((numer‘𝑦) ·
(denom‘𝑥))) ∈
ℤ) |
112 | 18, 19, 20 | qqhvq 31837 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) ∧
((((numer‘𝑥) ·
(denom‘𝑦)) +
((numer‘𝑦) ·
(denom‘𝑥))) ∈
ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) →
((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
113 | 37, 111, 79, 80, 112 | syl13anc 1370 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
114 | | rhmghm 19884 |
. . . . . 6
⊢ (𝐿 ∈ (ℤring
RingHom 𝑅) → 𝐿 ∈ (ℤring
GrpHom 𝑅)) |
115 | 84, 114 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
𝐿 ∈
(ℤring GrpHom 𝑅)) |
116 | | zringplusg 20589 |
. . . . . . 7
⊢ + =
(+g‘ℤring) |
117 | 28, 116, 24 | ghmlin 18754 |
. . . . . 6
⊢ ((𝐿 ∈ (ℤring
GrpHom 𝑅) ∧
((numer‘𝑥) ·
(denom‘𝑦)) ∈
ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → (𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g‘𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥))))) |
118 | 117 | oveq1d 7270 |
. . . . 5
⊢ ((𝐿 ∈ (ℤring
GrpHom 𝑅) ∧
((numer‘𝑥) ·
(denom‘𝑦)) ∈
ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g‘𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
119 | 115, 98, 100, 118 | syl3anc 1369 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g‘𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
120 | 110, 113,
119 | 3eqtrd 2782 |
. . 3
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g‘𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
121 | 23, 28, 19, 85 | rhmdvd 31422 |
. . . . . 6
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑅) ∧
((numer‘𝑥) ∈
ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
122 | 84, 33, 40, 50, 44, 53, 121 | syl132anc 1386 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
123 | 57, 59, 122 | 3eqtrd 2782 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘𝑥) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
124 | 23, 28, 19, 85 | rhmdvd 31422 |
. . . . . . 7
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑅) ∧
((numer‘𝑦) ∈
ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥))))) |
125 | 84, 46, 50, 40, 53, 44, 124 | syl132anc 1386 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥))))) |
126 | 72, 74 | mulcomd 10927 |
. . . . . . . 8
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((denom‘𝑥) ·
(denom‘𝑦)) =
((denom‘𝑦) ·
(denom‘𝑥))) |
127 | 126 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(𝐿‘((denom‘𝑥) · (denom‘𝑦))) = (𝐿‘((denom‘𝑦) · (denom‘𝑥)))) |
128 | 127 | oveq2d 7271 |
. . . . . 6
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥))))) |
129 | 125, 65, 128 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
130 | 63, 129 | eqtrd 2778 |
. . . 4
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘𝑦) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))) |
131 | 123, 130 | oveq12d 7273 |
. . 3
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
(((ℚHom‘𝑅)‘𝑥)(+g‘𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g‘𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))) |
132 | 106, 120,
131 | 3eqtr4d 2788 |
. 2
⊢ (((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) ∧
(𝑥 ∈ ℚ ∧
𝑦 ∈ ℚ)) →
((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(+g‘𝑅)((ℚHom‘𝑅)‘𝑦))) |
133 | 2, 3, 4, 8, 9, 12,
17, 22, 92, 18, 95, 24, 97, 132 | isrhmd 19888 |
1
⊢ ((𝑅 ∈ Field ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅) ∈
(𝑄 RingHom 𝑅)) |