Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rng1nfld | Structured version Visualization version GIF version |
Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
rng1nfld.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
Ref | Expression |
---|---|
rng1nfld | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng1nfld.m | . . . . . 6 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
2 | 1 | rng1nnzr 20128 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
3 | df-nel 3056 | . . . . 5 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
4 | 2, 3 | sylib 221 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
5 | drngnzr 20116 | . . . 4 ⊢ (𝑀 ∈ DivRing → 𝑀 ∈ NzRing) | |
6 | 4, 5 | nsyl 142 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ DivRing) |
7 | isfld 19592 | . . . 4 ⊢ (𝑀 ∈ Field ↔ (𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing)) | |
8 | simpl 486 | . . . . 5 ⊢ ((𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing) → 𝑀 ∈ DivRing) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → ((𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing) → 𝑀 ∈ DivRing)) |
10 | 7, 9 | syl5bi 245 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (𝑀 ∈ Field → 𝑀 ∈ DivRing)) |
11 | 6, 10 | mtod 201 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ Field) |
12 | df-nel 3056 | . 2 ⊢ (𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field) | |
13 | 11, 12 | sylibr 237 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ Field) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∉ wnel 3055 {csn 4525 {ctp 4529 〈cop 4531 ‘cfv 6340 ndxcnx 16551 Basecbs 16554 +gcplusg 16636 .rcmulr 16637 CRingccrg 19379 DivRingcdr 19583 Fieldcfield 19584 NzRingcnzr 20111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-tpos 7908 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-xnn0 12020 df-z 12034 df-uz 12296 df-fz 12953 df-hash 13754 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-plusg 16649 df-mulr 16650 df-0g 16786 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 df-minusg 18186 df-mgp 19321 df-ur 19333 df-ring 19380 df-oppr 19457 df-dvdsr 19475 df-unit 19476 df-drng 19585 df-field 19586 df-nzr 20112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |