![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rng1nfld | Structured version Visualization version GIF version |
Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
rng1nfld.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
Ref | Expression |
---|---|
rng1nfld | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng1nfld.m | . . . . . 6 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
2 | 1 | rng1nnzr 20652 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
3 | df-nel 3042 | . . . . 5 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
5 | drngnzr 20633 | . . . 4 ⊢ (𝑀 ∈ DivRing → 𝑀 ∈ NzRing) | |
6 | 4, 5 | nsyl 140 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ DivRing) |
7 | isfld 20624 | . . . 4 ⊢ (𝑀 ∈ Field ↔ (𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing)) | |
8 | 7 | simplbi 497 | . . 3 ⊢ (𝑀 ∈ Field → 𝑀 ∈ DivRing) |
9 | 6, 8 | nsyl 140 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ Field) |
10 | df-nel 3042 | . 2 ⊢ (𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ Field) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∉ wnel 3041 {csn 4624 {ctp 4628 〈cop 4630 ‘cfv 6542 ndxcnx 17153 Basecbs 17171 +gcplusg 17224 .rcmulr 17225 CRingccrg 20165 NzRingcnzr 20440 DivRingcdr 20613 Fieldcfield 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-plusg 17237 df-mulr 17238 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-nzr 20441 df-drng 20615 df-field 20616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |