MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng1nfld Structured version   Visualization version   GIF version

Theorem rng1nfld 19481
Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
rng1nfld.m 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
Assertion
Ref Expression
rng1nfld (𝑍𝑉𝑀 ∉ Field)

Proof of Theorem rng1nfld
StepHypRef Expression
1 rng1nfld.m . . . . . 6 𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
21rng1nnzr 19477 . . . . 5 (𝑍𝑉𝑀 ∉ NzRing)
3 df-nel 3078 . . . . 5 (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing)
42, 3sylib 209 . . . 4 (𝑍𝑉 → ¬ 𝑀 ∈ NzRing)
5 drngnzr 19465 . . . 4 (𝑀 ∈ DivRing → 𝑀 ∈ NzRing)
64, 5nsyl 137 . . 3 (𝑍𝑉 → ¬ 𝑀 ∈ DivRing)
7 isfld 18954 . . . 4 (𝑀 ∈ Field ↔ (𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing))
8 simpl 470 . . . . 5 ((𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing) → 𝑀 ∈ DivRing)
98a1i 11 . . . 4 (𝑍𝑉 → ((𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing) → 𝑀 ∈ DivRing))
107, 9syl5bi 233 . . 3 (𝑍𝑉 → (𝑀 ∈ Field → 𝑀 ∈ DivRing))
116, 10mtod 189 . 2 (𝑍𝑉 → ¬ 𝑀 ∈ Field)
12 df-nel 3078 . 2 (𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field)
1311, 12sylibr 225 1 (𝑍𝑉𝑀 ∉ Field)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2155  wnel 3077  {csn 4364  {ctp 4368  cop 4370  cfv 6095  ndxcnx 16059  Basecbs 16062  +gcplusg 16147  .rcmulr 16148  CRingccrg 18744  DivRingcdr 18945  Fieldcfield 18946  NzRingcnzr 19460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-tpos 7581  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-card 9042  df-cda 9269  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-2 11358  df-3 11359  df-n0 11554  df-xnn0 11624  df-z 11638  df-uz 11899  df-fz 12544  df-hash 13332  df-struct 16064  df-ndx 16065  df-slot 16066  df-base 16068  df-sets 16069  df-plusg 16160  df-mulr 16161  df-0g 16301  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-grp 17624  df-minusg 17625  df-mgp 18686  df-ur 18698  df-ring 18745  df-oppr 18819  df-dvdsr 18837  df-unit 18838  df-drng 18947  df-field 18948  df-nzr 19461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator