![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rng1nfld | Structured version Visualization version GIF version |
Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
rng1nfld.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
Ref | Expression |
---|---|
rng1nfld | ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng1nfld.m | . . . . . 6 ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | |
2 | 1 | rng1nnzr 19485 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing) |
3 | df-nel 3047 | . . . . 5 ⊢ (𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing) | |
4 | 2, 3 | sylib 208 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing) |
5 | drngnzr 19473 | . . . 4 ⊢ (𝑀 ∈ DivRing → 𝑀 ∈ NzRing) | |
6 | 4, 5 | nsyl 137 | . . 3 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ DivRing) |
7 | isfld 18962 | . . . 4 ⊢ (𝑀 ∈ Field ↔ (𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing)) | |
8 | simpl 468 | . . . . 5 ⊢ ((𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing) → 𝑀 ∈ DivRing) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ 𝑉 → ((𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing) → 𝑀 ∈ DivRing)) |
10 | 7, 9 | syl5bi 232 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (𝑀 ∈ Field → 𝑀 ∈ DivRing)) |
11 | 6, 10 | mtod 189 | . 2 ⊢ (𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ Field) |
12 | df-nel 3047 | . 2 ⊢ (𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field) | |
13 | 11, 12 | sylibr 224 | 1 ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∉ Field) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∉ wnel 3046 {csn 4316 {ctp 4320 〈cop 4322 ‘cfv 6029 ndxcnx 16057 Basecbs 16060 +gcplusg 16145 .rcmulr 16146 CRingccrg 18752 DivRingcdr 18953 Fieldcfield 18954 NzRingcnzr 19468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-n0 11496 df-xnn0 11567 df-z 11581 df-uz 11890 df-fz 12530 df-hash 13318 df-struct 16062 df-ndx 16063 df-slot 16064 df-base 16066 df-sets 16067 df-plusg 16158 df-mulr 16159 df-0g 16306 df-mgm 17446 df-sgrp 17488 df-mnd 17499 df-grp 17629 df-minusg 17630 df-mgp 18694 df-ur 18706 df-ring 18753 df-oppr 18827 df-dvdsr 18845 df-unit 18846 df-drng 18955 df-field 18956 df-nzr 19469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |