MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng1nfld Structured version   Visualization version   GIF version

Theorem rng1nfld 20630
Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
rng1nfld.m 𝑀 = {⟨(Baseβ€˜ndx), {𝑍}⟩, ⟨(+gβ€˜ndx), {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©}⟩, ⟨(.rβ€˜ndx), {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©}⟩}
Assertion
Ref Expression
rng1nfld (𝑍 ∈ 𝑉 β†’ 𝑀 βˆ‰ Field)

Proof of Theorem rng1nfld
StepHypRef Expression
1 rng1nfld.m . . . . . 6 𝑀 = {⟨(Baseβ€˜ndx), {𝑍}⟩, ⟨(+gβ€˜ndx), {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©}⟩, ⟨(.rβ€˜ndx), {βŸ¨βŸ¨π‘, π‘βŸ©, π‘βŸ©}⟩}
21rng1nnzr 20626 . . . . 5 (𝑍 ∈ 𝑉 β†’ 𝑀 βˆ‰ NzRing)
3 df-nel 3041 . . . . 5 (𝑀 βˆ‰ NzRing ↔ Β¬ 𝑀 ∈ NzRing)
42, 3sylib 217 . . . 4 (𝑍 ∈ 𝑉 β†’ Β¬ 𝑀 ∈ NzRing)
5 drngnzr 20607 . . . 4 (𝑀 ∈ DivRing β†’ 𝑀 ∈ NzRing)
64, 5nsyl 140 . . 3 (𝑍 ∈ 𝑉 β†’ Β¬ 𝑀 ∈ DivRing)
7 isfld 20598 . . . 4 (𝑀 ∈ Field ↔ (𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing))
87simplbi 497 . . 3 (𝑀 ∈ Field β†’ 𝑀 ∈ DivRing)
96, 8nsyl 140 . 2 (𝑍 ∈ 𝑉 β†’ Β¬ 𝑀 ∈ Field)
10 df-nel 3041 . 2 (𝑀 βˆ‰ Field ↔ Β¬ 𝑀 ∈ Field)
119, 10sylibr 233 1 (𝑍 ∈ 𝑉 β†’ 𝑀 βˆ‰ Field)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1533   ∈ wcel 2098   βˆ‰ wnel 3040  {csn 4623  {ctp 4627  βŸ¨cop 4629  β€˜cfv 6537  ndxcnx 17135  Basecbs 17153  +gcplusg 17206  .rcmulr 17207  CRingccrg 20139  NzRingcnzr 20414  DivRingcdr 20587  Fieldcfield 20588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-tpos 8212  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-plusg 17219  df-mulr 17220  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-oppr 20236  df-dvdsr 20259  df-unit 20260  df-nzr 20415  df-drng 20589  df-field 20590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator