![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rearchi | Structured version Visualization version GIF version |
Description: The field of the real numbers is Archimedean. See also arch 12550. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
Ref | Expression |
---|---|
rearchi | ⊢ ℝfld ∈ Archi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reofld 33337 | . . 3 ⊢ ℝfld ∈ oField | |
2 | rebase 21647 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
3 | eqid 2740 | . . . 4 ⊢ (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld) | |
4 | relt 21656 | . . . 4 ⊢ < = (lt‘ℝfld) | |
5 | 2, 3, 4 | isarchiofld 33312 | . . 3 ⊢ (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
7 | arch 12550 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛) | |
8 | nnz 12660 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
9 | refld 21660 | . . . . . . . . 9 ⊢ ℝfld ∈ Field | |
10 | isfld 20762 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
11 | 10 | simplbi 497 | . . . . . . . . 9 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
12 | drngring 20758 | . . . . . . . . 9 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
13 | 9, 11, 12 | mp2b 10 | . . . . . . . 8 ⊢ ℝfld ∈ Ring |
14 | eqid 2740 | . . . . . . . . 9 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
15 | re1r 21654 | . . . . . . . . 9 ⊢ 1 = (1r‘ℝfld) | |
16 | 3, 14, 15 | zrhmulg 21543 | . . . . . . . 8 ⊢ ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
17 | 13, 16 | mpan 689 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
18 | 1re 11290 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
19 | remulg 21648 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) | |
20 | 18, 19 | mpan2 690 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) |
21 | zcn 12644 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
22 | 21 | mulridd 11307 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
23 | 17, 20, 22 | 3eqtrd 2784 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛) |
24 | 23 | breq2d 5178 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
25 | 8, 24 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
26 | 25 | rexbiia 3098 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛) |
27 | 7, 26 | sylibr 234 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
28 | 6, 27 | mprgbir 3074 | 1 ⊢ ℝfld ∈ Archi |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 · cmul 11189 < clt 11324 ℕcn 12293 ℤcz 12639 .gcmg 19107 Ringcrg 20260 CRingccrg 20261 DivRingcdr 20751 Fieldcfield 20752 ℤRHomczrh 21533 ℝfldcrefld 21645 Archicarchi 33157 oFieldcofld 33291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-seq 14053 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-toset 18487 df-ps 18636 df-tsr 18637 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-refld 21646 df-omnd 33049 df-ogrp 33050 df-inftm 33158 df-archi 33159 df-orng 33292 df-ofld 33293 |
This theorem is referenced by: nn0archi 33340 |
Copyright terms: Public domain | W3C validator |