Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rearchi Structured version   Visualization version   GIF version

Theorem rearchi 33283
Description: The field of the real numbers is Archimedean. See also arch 12381. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Assertion
Ref Expression
rearchi fld ∈ Archi

Proof of Theorem rearchi
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reofld 33281 . . 3 fld ∈ oField
2 rebase 21513 . . . 4 ℝ = (Base‘ℝfld)
3 eqid 2729 . . . 4 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
4 relt 21522 . . . 4 < = (lt‘ℝfld)
52, 3, 4isarchiofld 33141 . . 3 (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)))
61, 5ax-mp 5 . 2 (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))
7 arch 12381 . . 3 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
8 nnz 12492 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9 refld 21526 . . . . . . . . 9 fld ∈ Field
10 isfld 20625 . . . . . . . . . 10 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
1110simplbi 497 . . . . . . . . 9 (ℝfld ∈ Field → ℝfld ∈ DivRing)
12 drngring 20621 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
139, 11, 12mp2b 10 . . . . . . . 8 fld ∈ Ring
14 eqid 2729 . . . . . . . . 9 (.g‘ℝfld) = (.g‘ℝfld)
15 re1r 21520 . . . . . . . . 9 1 = (1r‘ℝfld)
163, 14, 15zrhmulg 21416 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1))
1713, 16mpan 690 . . . . . . 7 (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1))
18 1re 11115 . . . . . . . 8 1 ∈ ℝ
19 remulg 21514 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1))
2018, 19mpan2 691 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1))
21 zcn 12476 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2221mulridd 11132 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2317, 20, 223eqtrd 2768 . . . . . 6 (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛)
2423breq2d 5104 . . . . 5 (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛))
258, 24syl 17 . . . 4 (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛))
2625rexbiia 3074 . . 3 (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
277, 26sylibr 234 . 2 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))
286, 27mprgbir 3051 1 fld ∈ Archi
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   · cmul 11014   < clt 11149  cn 12128  cz 12471  .gcmg 18946  Ringcrg 20118  CRingccrg 20119  DivRingcdr 20614  Fieldcfield 20615  oFieldcofld 20743  ℤRHomczrh 21406  fldcrefld 21511  Archicarchi 33119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-toset 18321  df-ps 18472  df-tsr 18473  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cmn 19661  df-abl 19662  df-omnd 20000  df-ogrp 20001  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-orng 20744  df-ofld 20745  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-refld 21512  df-inftm 33120  df-archi 33121
This theorem is referenced by:  nn0archi  33284
  Copyright terms: Public domain W3C validator