| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rearchi | Structured version Visualization version GIF version | ||
| Description: The field of the real numbers is Archimedean. See also arch 12498. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| rearchi | ⊢ ℝfld ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reofld 33359 | . . 3 ⊢ ℝfld ∈ oField | |
| 2 | rebase 21566 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 3 | eqid 2735 | . . . 4 ⊢ (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld) | |
| 4 | relt 21575 | . . . 4 ⊢ < = (lt‘ℝfld) | |
| 5 | 2, 3, 4 | isarchiofld 33339 | . . 3 ⊢ (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
| 7 | arch 12498 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛) | |
| 8 | nnz 12609 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 9 | refld 21579 | . . . . . . . . 9 ⊢ ℝfld ∈ Field | |
| 10 | isfld 20700 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
| 11 | 10 | simplbi 497 | . . . . . . . . 9 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
| 12 | drngring 20696 | . . . . . . . . 9 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
| 13 | 9, 11, 12 | mp2b 10 | . . . . . . . 8 ⊢ ℝfld ∈ Ring |
| 14 | eqid 2735 | . . . . . . . . 9 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 15 | re1r 21573 | . . . . . . . . 9 ⊢ 1 = (1r‘ℝfld) | |
| 16 | 3, 14, 15 | zrhmulg 21470 | . . . . . . . 8 ⊢ ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
| 17 | 13, 16 | mpan 690 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
| 18 | 1re 11235 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 19 | remulg 21567 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) | |
| 20 | 18, 19 | mpan2 691 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) |
| 21 | zcn 12593 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 22 | 21 | mulridd 11252 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
| 23 | 17, 20, 22 | 3eqtrd 2774 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛) |
| 24 | 23 | breq2d 5131 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
| 25 | 8, 24 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
| 26 | 25 | rexbiia 3081 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛) |
| 27 | 7, 26 | sylibr 234 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
| 28 | 6, 27 | mprgbir 3058 | 1 ⊢ ℝfld ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 · cmul 11134 < clt 11269 ℕcn 12240 ℤcz 12588 .gcmg 19050 Ringcrg 20193 CRingccrg 20194 DivRingcdr 20689 Fieldcfield 20690 ℤRHomczrh 21460 ℝfldcrefld 21564 Archicarchi 33175 oFieldcofld 33318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-seq 14020 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-proset 18306 df-poset 18325 df-plt 18340 df-toset 18427 df-ps 18576 df-tsr 18577 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-drng 20691 df-field 20692 df-cnfld 21316 df-zring 21408 df-zrh 21464 df-refld 21565 df-omnd 33067 df-ogrp 33068 df-inftm 33176 df-archi 33177 df-orng 33319 df-ofld 33320 |
| This theorem is referenced by: nn0archi 33362 |
| Copyright terms: Public domain | W3C validator |