Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rearchi Structured version   Visualization version   GIF version

Theorem rearchi 33324
Description: The field of the real numbers is Archimedean. See also arch 12446. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Assertion
Ref Expression
rearchi fld ∈ Archi

Proof of Theorem rearchi
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reofld 33322 . . 3 fld ∈ oField
2 rebase 21522 . . . 4 ℝ = (Base‘ℝfld)
3 eqid 2730 . . . 4 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
4 relt 21531 . . . 4 < = (lt‘ℝfld)
52, 3, 4isarchiofld 33302 . . 3 (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)))
61, 5ax-mp 5 . 2 (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))
7 arch 12446 . . 3 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
8 nnz 12557 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9 refld 21535 . . . . . . . . 9 fld ∈ Field
10 isfld 20656 . . . . . . . . . 10 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
1110simplbi 497 . . . . . . . . 9 (ℝfld ∈ Field → ℝfld ∈ DivRing)
12 drngring 20652 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
139, 11, 12mp2b 10 . . . . . . . 8 fld ∈ Ring
14 eqid 2730 . . . . . . . . 9 (.g‘ℝfld) = (.g‘ℝfld)
15 re1r 21529 . . . . . . . . 9 1 = (1r‘ℝfld)
163, 14, 15zrhmulg 21426 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1))
1713, 16mpan 690 . . . . . . 7 (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1))
18 1re 11181 . . . . . . . 8 1 ∈ ℝ
19 remulg 21523 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1))
2018, 19mpan2 691 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1))
21 zcn 12541 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2221mulridd 11198 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2317, 20, 223eqtrd 2769 . . . . . 6 (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛)
2423breq2d 5122 . . . . 5 (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛))
258, 24syl 17 . . . 4 (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛))
2625rexbiia 3075 . . 3 (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
277, 26sylibr 234 . 2 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))
286, 27mprgbir 3052 1 fld ∈ Archi
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   · cmul 11080   < clt 11215  cn 12193  cz 12536  .gcmg 19006  Ringcrg 20149  CRingccrg 20150  DivRingcdr 20645  Fieldcfield 20646  ℤRHomczrh 21416  fldcrefld 21520  Archicarchi 33138  oFieldcofld 33281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-seq 13974  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-toset 18383  df-ps 18532  df-tsr 18533  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-refld 21521  df-omnd 33020  df-ogrp 33021  df-inftm 33139  df-archi 33140  df-orng 33282  df-ofld 33283
This theorem is referenced by:  nn0archi  33325
  Copyright terms: Public domain W3C validator