![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rearchi | Structured version Visualization version GIF version |
Description: The field of the real numbers is Archimedean. See also arch 12473. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
Ref | Expression |
---|---|
rearchi | โข โfld โ Archi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reofld 32962 | . . 3 โข โfld โ oField | |
2 | rebase 21499 | . . . 4 โข โ = (Baseโโfld) | |
3 | eqid 2726 | . . . 4 โข (โคRHomโโfld) = (โคRHomโโfld) | |
4 | relt 21508 | . . . 4 โข < = (ltโโfld) | |
5 | 2, 3, 4 | isarchiofld 32938 | . . 3 โข (โfld โ oField โ (โfld โ Archi โ โ๐ฅ โ โ โ๐ โ โ ๐ฅ < ((โคRHomโโfld)โ๐))) |
6 | 1, 5 | ax-mp 5 | . 2 โข (โfld โ Archi โ โ๐ฅ โ โ โ๐ โ โ ๐ฅ < ((โคRHomโโfld)โ๐)) |
7 | arch 12473 | . . 3 โข (๐ฅ โ โ โ โ๐ โ โ ๐ฅ < ๐) | |
8 | nnz 12583 | . . . . 5 โข (๐ โ โ โ ๐ โ โค) | |
9 | refld 21512 | . . . . . . . . 9 โข โfld โ Field | |
10 | isfld 20598 | . . . . . . . . . 10 โข (โfld โ Field โ (โfld โ DivRing โง โfld โ CRing)) | |
11 | 10 | simplbi 497 | . . . . . . . . 9 โข (โfld โ Field โ โfld โ DivRing) |
12 | drngring 20594 | . . . . . . . . 9 โข (โfld โ DivRing โ โfld โ Ring) | |
13 | 9, 11, 12 | mp2b 10 | . . . . . . . 8 โข โfld โ Ring |
14 | eqid 2726 | . . . . . . . . 9 โข (.gโโfld) = (.gโโfld) | |
15 | re1r 21506 | . . . . . . . . 9 โข 1 = (1rโโfld) | |
16 | 3, 14, 15 | zrhmulg 21396 | . . . . . . . 8 โข ((โfld โ Ring โง ๐ โ โค) โ ((โคRHomโโfld)โ๐) = (๐(.gโโfld)1)) |
17 | 13, 16 | mpan 687 | . . . . . . 7 โข (๐ โ โค โ ((โคRHomโโfld)โ๐) = (๐(.gโโfld)1)) |
18 | 1re 11218 | . . . . . . . 8 โข 1 โ โ | |
19 | remulg 21500 | . . . . . . . 8 โข ((๐ โ โค โง 1 โ โ) โ (๐(.gโโfld)1) = (๐ ยท 1)) | |
20 | 18, 19 | mpan2 688 | . . . . . . 7 โข (๐ โ โค โ (๐(.gโโfld)1) = (๐ ยท 1)) |
21 | zcn 12567 | . . . . . . . 8 โข (๐ โ โค โ ๐ โ โ) | |
22 | 21 | mulridd 11235 | . . . . . . 7 โข (๐ โ โค โ (๐ ยท 1) = ๐) |
23 | 17, 20, 22 | 3eqtrd 2770 | . . . . . 6 โข (๐ โ โค โ ((โคRHomโโfld)โ๐) = ๐) |
24 | 23 | breq2d 5153 | . . . . 5 โข (๐ โ โค โ (๐ฅ < ((โคRHomโโfld)โ๐) โ ๐ฅ < ๐)) |
25 | 8, 24 | syl 17 | . . . 4 โข (๐ โ โ โ (๐ฅ < ((โคRHomโโfld)โ๐) โ ๐ฅ < ๐)) |
26 | 25 | rexbiia 3086 | . . 3 โข (โ๐ โ โ ๐ฅ < ((โคRHomโโfld)โ๐) โ โ๐ โ โ ๐ฅ < ๐) |
27 | 7, 26 | sylibr 233 | . 2 โข (๐ฅ โ โ โ โ๐ โ โ ๐ฅ < ((โคRHomโโfld)โ๐)) |
28 | 6, 27 | mprgbir 3062 | 1 โข โfld โ Archi |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 = wceq 1533 โ wcel 2098 โwral 3055 โwrex 3064 class class class wbr 5141 โcfv 6537 (class class class)co 7405 โcr 11111 1c1 11113 ยท cmul 11117 < clt 11252 โcn 12216 โคcz 12562 .gcmg 18995 Ringcrg 20138 CRingccrg 20139 DivRingcdr 20587 Fieldcfield 20588 โคRHomczrh 21386 โfldcrefld 21497 Archicarchi 32829 oFieldcofld 32917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-seq 13973 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-0g 17396 df-proset 18260 df-poset 18278 df-plt 18295 df-toset 18382 df-ps 18531 df-tsr 18532 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-ghm 19139 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-dvr 20303 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-drng 20589 df-field 20590 df-cnfld 21241 df-zring 21334 df-zrh 21390 df-refld 21498 df-omnd 32723 df-ogrp 32724 df-inftm 32830 df-archi 32831 df-orng 32918 df-ofld 32919 |
This theorem is referenced by: nn0archi 32965 |
Copyright terms: Public domain | W3C validator |