![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rearchi | Structured version Visualization version GIF version |
Description: The field of the real numbers is Archimedean. See also arch 12521. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
Ref | Expression |
---|---|
rearchi | ⊢ ℝfld ∈ Archi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reofld 33352 | . . 3 ⊢ ℝfld ∈ oField | |
2 | rebase 21642 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
3 | eqid 2735 | . . . 4 ⊢ (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld) | |
4 | relt 21651 | . . . 4 ⊢ < = (lt‘ℝfld) | |
5 | 2, 3, 4 | isarchiofld 33327 | . . 3 ⊢ (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
7 | arch 12521 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛) | |
8 | nnz 12632 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
9 | refld 21655 | . . . . . . . . 9 ⊢ ℝfld ∈ Field | |
10 | isfld 20757 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
11 | 10 | simplbi 497 | . . . . . . . . 9 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
12 | drngring 20753 | . . . . . . . . 9 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
13 | 9, 11, 12 | mp2b 10 | . . . . . . . 8 ⊢ ℝfld ∈ Ring |
14 | eqid 2735 | . . . . . . . . 9 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
15 | re1r 21649 | . . . . . . . . 9 ⊢ 1 = (1r‘ℝfld) | |
16 | 3, 14, 15 | zrhmulg 21538 | . . . . . . . 8 ⊢ ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
17 | 13, 16 | mpan 690 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
18 | 1re 11259 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
19 | remulg 21643 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) | |
20 | 18, 19 | mpan2 691 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) |
21 | zcn 12616 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
22 | 21 | mulridd 11276 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
23 | 17, 20, 22 | 3eqtrd 2779 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛) |
24 | 23 | breq2d 5160 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
25 | 8, 24 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
26 | 25 | rexbiia 3090 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛) |
27 | 7, 26 | sylibr 234 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
28 | 6, 27 | mprgbir 3066 | 1 ⊢ ℝfld ∈ Archi |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 · cmul 11158 < clt 11293 ℕcn 12264 ℤcz 12611 .gcmg 19098 Ringcrg 20251 CRingccrg 20252 DivRingcdr 20746 Fieldcfield 20747 ℤRHomczrh 21528 ℝfldcrefld 21640 Archicarchi 33167 oFieldcofld 33306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-seq 14040 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-proset 18352 df-poset 18371 df-plt 18388 df-toset 18475 df-ps 18624 df-tsr 18625 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-field 20749 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-refld 21641 df-omnd 33059 df-ogrp 33060 df-inftm 33168 df-archi 33169 df-orng 33307 df-ofld 33308 |
This theorem is referenced by: nn0archi 33355 |
Copyright terms: Public domain | W3C validator |