| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rearchi | Structured version Visualization version GIF version | ||
| Description: The field of the real numbers is Archimedean. See also arch 12415. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| rearchi | ⊢ ℝfld ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reofld 33288 | . . 3 ⊢ ℝfld ∈ oField | |
| 2 | rebase 21491 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 3 | eqid 2729 | . . . 4 ⊢ (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld) | |
| 4 | relt 21500 | . . . 4 ⊢ < = (lt‘ℝfld) | |
| 5 | 2, 3, 4 | isarchiofld 33268 | . . 3 ⊢ (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
| 7 | arch 12415 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛) | |
| 8 | nnz 12526 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 9 | refld 21504 | . . . . . . . . 9 ⊢ ℝfld ∈ Field | |
| 10 | isfld 20625 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
| 11 | 10 | simplbi 497 | . . . . . . . . 9 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
| 12 | drngring 20621 | . . . . . . . . 9 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
| 13 | 9, 11, 12 | mp2b 10 | . . . . . . . 8 ⊢ ℝfld ∈ Ring |
| 14 | eqid 2729 | . . . . . . . . 9 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 15 | re1r 21498 | . . . . . . . . 9 ⊢ 1 = (1r‘ℝfld) | |
| 16 | 3, 14, 15 | zrhmulg 21395 | . . . . . . . 8 ⊢ ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
| 17 | 13, 16 | mpan 690 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
| 18 | 1re 11150 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 19 | remulg 21492 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) | |
| 20 | 18, 19 | mpan2 691 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) |
| 21 | zcn 12510 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 22 | 21 | mulridd 11167 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
| 23 | 17, 20, 22 | 3eqtrd 2768 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛) |
| 24 | 23 | breq2d 5114 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
| 25 | 8, 24 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
| 26 | 25 | rexbiia 3074 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛) |
| 27 | 7, 26 | sylibr 234 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
| 28 | 6, 27 | mprgbir 3051 | 1 ⊢ ℝfld ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 · cmul 11049 < clt 11184 ℕcn 12162 ℤcz 12505 .gcmg 18975 Ringcrg 20118 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 ℤRHomczrh 21385 ℝfldcrefld 21489 Archicarchi 33104 oFieldcofld 33247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-seq 13943 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-proset 18231 df-poset 18250 df-plt 18265 df-toset 18352 df-ps 18501 df-tsr 18502 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-cnfld 21241 df-zring 21333 df-zrh 21389 df-refld 21490 df-omnd 32986 df-ogrp 32987 df-inftm 33105 df-archi 33106 df-orng 33248 df-ofld 33249 |
| This theorem is referenced by: nn0archi 33291 |
| Copyright terms: Public domain | W3C validator |