Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rearchi Structured version   Visualization version   GIF version

Theorem rearchi 33290
Description: The field of the real numbers is Archimedean. See also arch 12415. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Assertion
Ref Expression
rearchi fld ∈ Archi

Proof of Theorem rearchi
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reofld 33288 . . 3 fld ∈ oField
2 rebase 21491 . . . 4 ℝ = (Base‘ℝfld)
3 eqid 2729 . . . 4 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
4 relt 21500 . . . 4 < = (lt‘ℝfld)
52, 3, 4isarchiofld 33268 . . 3 (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)))
61, 5ax-mp 5 . 2 (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))
7 arch 12415 . . 3 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
8 nnz 12526 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9 refld 21504 . . . . . . . . 9 fld ∈ Field
10 isfld 20625 . . . . . . . . . 10 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
1110simplbi 497 . . . . . . . . 9 (ℝfld ∈ Field → ℝfld ∈ DivRing)
12 drngring 20621 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
139, 11, 12mp2b 10 . . . . . . . 8 fld ∈ Ring
14 eqid 2729 . . . . . . . . 9 (.g‘ℝfld) = (.g‘ℝfld)
15 re1r 21498 . . . . . . . . 9 1 = (1r‘ℝfld)
163, 14, 15zrhmulg 21395 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1))
1713, 16mpan 690 . . . . . . 7 (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1))
18 1re 11150 . . . . . . . 8 1 ∈ ℝ
19 remulg 21492 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1))
2018, 19mpan2 691 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1))
21 zcn 12510 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
2221mulridd 11167 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛)
2317, 20, 223eqtrd 2768 . . . . . 6 (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛)
2423breq2d 5114 . . . . 5 (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛))
258, 24syl 17 . . . 4 (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛))
2625rexbiia 3074 . . 3 (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
277, 26sylibr 234 . 2 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))
286, 27mprgbir 3051 1 fld ∈ Archi
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   · cmul 11049   < clt 11184  cn 12162  cz 12505  .gcmg 18975  Ringcrg 20118  CRingccrg 20119  DivRingcdr 20614  Fieldcfield 20615  ℤRHomczrh 21385  fldcrefld 21489  Archicarchi 33104  oFieldcofld 33247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-seq 13943  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-proset 18231  df-poset 18250  df-plt 18265  df-toset 18352  df-ps 18501  df-tsr 18502  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-refld 21490  df-omnd 32986  df-ogrp 32987  df-inftm 33105  df-archi 33106  df-orng 33248  df-ofld 33249
This theorem is referenced by:  nn0archi  33291
  Copyright terms: Public domain W3C validator