| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rearchi | Structured version Visualization version GIF version | ||
| Description: The field of the real numbers is Archimedean. See also arch 12381. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| rearchi | ⊢ ℝfld ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reofld 33281 | . . 3 ⊢ ℝfld ∈ oField | |
| 2 | rebase 21513 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 3 | eqid 2729 | . . . 4 ⊢ (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld) | |
| 4 | relt 21522 | . . . 4 ⊢ < = (lt‘ℝfld) | |
| 5 | 2, 3, 4 | isarchiofld 33141 | . . 3 ⊢ (ℝfld ∈ oField → (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛))) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (ℝfld ∈ Archi ↔ ∀𝑥 ∈ ℝ ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
| 7 | arch 12381 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛) | |
| 8 | nnz 12492 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 9 | refld 21526 | . . . . . . . . 9 ⊢ ℝfld ∈ Field | |
| 10 | isfld 20625 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
| 11 | 10 | simplbi 497 | . . . . . . . . 9 ⊢ (ℝfld ∈ Field → ℝfld ∈ DivRing) |
| 12 | drngring 20621 | . . . . . . . . 9 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
| 13 | 9, 11, 12 | mp2b 10 | . . . . . . . 8 ⊢ ℝfld ∈ Ring |
| 14 | eqid 2729 | . . . . . . . . 9 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 15 | re1r 21520 | . . . . . . . . 9 ⊢ 1 = (1r‘ℝfld) | |
| 16 | 3, 14, 15 | zrhmulg 21416 | . . . . . . . 8 ⊢ ((ℝfld ∈ Ring ∧ 𝑛 ∈ ℤ) → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
| 17 | 13, 16 | mpan 690 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = (𝑛(.g‘ℝfld)1)) |
| 18 | 1re 11115 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 19 | remulg 21514 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℤ ∧ 1 ∈ ℝ) → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) | |
| 20 | 18, 19 | mpan2 691 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛(.g‘ℝfld)1) = (𝑛 · 1)) |
| 21 | zcn 12476 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 22 | 21 | mulridd 11132 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (𝑛 · 1) = 𝑛) |
| 23 | 17, 20, 22 | 3eqtrd 2768 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → ((ℤRHom‘ℝfld)‘𝑛) = 𝑛) |
| 24 | 23 | breq2d 5104 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
| 25 | 8, 24 | syl 17 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ 𝑥 < 𝑛)) |
| 26 | 25 | rexbiia 3074 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛) |
| 27 | 7, 26 | sylibr 234 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < ((ℤRHom‘ℝfld)‘𝑛)) |
| 28 | 6, 27 | mprgbir 3051 | 1 ⊢ ℝfld ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 · cmul 11014 < clt 11149 ℕcn 12128 ℤcz 12471 .gcmg 18946 Ringcrg 20118 CRingccrg 20119 DivRingcdr 20614 Fieldcfield 20615 oFieldcofld 20743 ℤRHomczrh 21406 ℝfldcrefld 21511 Archicarchi 33119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-seq 13909 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-toset 18321 df-ps 18472 df-tsr 18473 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cmn 19661 df-abl 19662 df-omnd 20000 df-ogrp 20001 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-orng 20744 df-ofld 20745 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-refld 21512 df-inftm 33120 df-archi 33121 |
| This theorem is referenced by: nn0archi 33284 |
| Copyright terms: Public domain | W3C validator |