| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rgmoddimOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rlmdim 33613 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rgmoddimOLD | ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfld 20655 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 2 | 1 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 3 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | 3 | ressid 17220 | . . . . 5 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) = 𝐹) |
| 5 | 4, 2 | eqeltrd 2829 | . . . 4 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) ∈ DivRing) |
| 6 | drngring 20651 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 7 | 3 | subrgid 20488 | . . . . 5 ⊢ (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
| 8 | 2, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
| 9 | rlmdim.1 | . . . . . 6 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 10 | rlmval 21104 | . . . . . 6 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 11 | 9, 10 | eqtri 2753 | . . . . 5 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 12 | eqid 2730 | . . . . 5 ⊢ (𝐹 ↾s (Base‘𝐹)) = (𝐹 ↾s (Base‘𝐹)) | |
| 13 | 11, 12 | sralvec 33589 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec) |
| 14 | 2, 5, 8, 13 | syl3anc 1373 | . . 3 ⊢ (𝐹 ∈ Field → 𝑉 ∈ LVec) |
| 15 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ Field → 𝐹 ∈ Ring) |
| 16 | ssidd 3978 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 17 | 11, 3 | sraring 21099 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring) |
| 18 | 15, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ Ring) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 21 | 19, 20 | ringidcl 20180 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 22 | 18, 21 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 23 | 11, 3 | sradrng 33586 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 24 | 2, 16, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ DivRing) |
| 25 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 26 | 25, 20 | drngunz 20662 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 28 | 19, 25 | lindssn 33357 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 29 | 14, 22, 27, 28 | syl3anc 1373 | . . . 4 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 30 | rspval 21127 | . . . . . . . . 9 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 31 | 9 | fveq2i 6868 | . . . . . . . . 9 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 32 | 30, 31 | eqtr4i 2756 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘𝑉) |
| 33 | 32 | fveq1i 6866 | . . . . . . 7 ⊢ ((RSpan‘𝐹)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝐹)}) |
| 34 | eqid 2730 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (RSpan‘𝐹) | |
| 35 | eqid 2730 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 36 | 34, 3, 35 | rsp1 21153 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 37 | 33, 36 | eqtr3id 2779 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 38 | 2, 6, 37 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 39 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 40 | eqidd 2731 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝐹)) | |
| 41 | 39, 40, 16 | sra1r 33585 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝑉)) |
| 42 | 41 | sneqd 4609 | . . . . . 6 ⊢ (𝐹 ∈ Field → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 43 | 42 | fveq2d 6869 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 44 | 39, 16 | srabase 21090 | . . . . 5 ⊢ (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉)) |
| 45 | 38, 43, 44 | 3eqtr3d 2773 | . . . 4 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 46 | eqid 2730 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 47 | eqid 2730 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 48 | 19, 46, 47 | islbs4 21747 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 49 | 29, 45, 48 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 50 | 46 | dimval 33604 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 51 | 14, 49, 50 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 52 | fvex 6878 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 53 | hashsng 14344 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 54 | 52, 53 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 55 | 51, 54 | eqtrdi 2781 | 1 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 Vcvv 3455 ⊆ wss 3922 {csn 4597 ‘cfv 6519 (class class class)co 7394 1c1 11087 ♯chash 14305 Basecbs 17185 ↾s cress 17206 0gc0g 17408 1rcur 20096 Ringcrg 20148 CRingccrg 20149 SubRingcsubrg 20484 DivRingcdr 20644 Fieldcfield 20645 LSpanclspn 20883 LBasisclbs 20987 LVecclvec 21015 subringAlg csra 21084 ringLModcrglmod 21085 RSpancrsp 21123 LIndSclinds 21720 dimcldim 33602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-reg 9563 ax-inf2 9612 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9481 df-r1 9735 df-rank 9736 df-card 9910 df-acn 9913 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-xnn0 12532 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-hash 14306 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ocomp 17247 df-0g 17410 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-proset 18261 df-drs 18262 df-poset 18280 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-subrg 20485 df-drng 20646 df-field 20647 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lbs 20988 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-lindf 21721 df-linds 21722 df-dim 33603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |