Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgmoddimOLD Structured version   Visualization version   GIF version

Theorem rgmoddimOLD 33651
Description: Obsolete version of rlmdim 33650 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rlmdim.1 𝑉 = (ringLMod‘𝐹)
Assertion
Ref Expression
rgmoddimOLD (𝐹 ∈ Field → (dim‘𝑉) = 1)

Proof of Theorem rgmoddimOLD
StepHypRef Expression
1 isfld 20763 . . . . 5 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
21simplbi 497 . . . 4 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
3 eqid 2736 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
43ressid 17296 . . . . 5 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) = 𝐹)
54, 2eqeltrd 2840 . . . 4 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) ∈ DivRing)
6 drngring 20759 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
73subrgid 20596 . . . . 5 (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹))
82, 6, 73syl 18 . . . 4 (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹))
9 rlmdim.1 . . . . . 6 𝑉 = (ringLMod‘𝐹)
10 rlmval 21222 . . . . . 6 (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹))
119, 10eqtri 2764 . . . . 5 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))
12 eqid 2736 . . . . 5 (𝐹s (Base‘𝐹)) = (𝐹s (Base‘𝐹))
1311, 12sralvec 33628 . . . 4 ((𝐹 ∈ DivRing ∧ (𝐹s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec)
142, 5, 8, 13syl3anc 1371 . . 3 (𝐹 ∈ Field → 𝑉 ∈ LVec)
152, 6syl 17 . . . . . . 7 (𝐹 ∈ Field → 𝐹 ∈ Ring)
16 ssidd 4020 . . . . . . 7 (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹))
1711, 3sraring 21217 . . . . . . 7 ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring)
1815, 16, 17syl2anc 584 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ Ring)
19 eqid 2736 . . . . . . 7 (Base‘𝑉) = (Base‘𝑉)
20 eqid 2736 . . . . . . 7 (1r𝑉) = (1r𝑉)
2119, 20ringidcl 20286 . . . . . 6 (𝑉 ∈ Ring → (1r𝑉) ∈ (Base‘𝑉))
2218, 21syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ∈ (Base‘𝑉))
2311, 3sradrng 33626 . . . . . . 7 ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing)
242, 16, 23syl2anc 584 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ DivRing)
25 eqid 2736 . . . . . . 7 (0g𝑉) = (0g𝑉)
2625, 20drngunz 20770 . . . . . 6 (𝑉 ∈ DivRing → (1r𝑉) ≠ (0g𝑉))
2724, 26syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ≠ (0g𝑉))
2819, 25lindssn 33399 . . . . 5 ((𝑉 ∈ LVec ∧ (1r𝑉) ∈ (Base‘𝑉) ∧ (1r𝑉) ≠ (0g𝑉)) → {(1r𝑉)} ∈ (LIndS‘𝑉))
2914, 22, 27, 28syl3anc 1371 . . . 4 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LIndS‘𝑉))
30 rspval 21245 . . . . . . . . 9 (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹))
319fveq2i 6914 . . . . . . . . 9 (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹))
3230, 31eqtr4i 2767 . . . . . . . 8 (RSpan‘𝐹) = (LSpan‘𝑉)
3332fveq1i 6912 . . . . . . 7 ((RSpan‘𝐹)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝐹)})
34 eqid 2736 . . . . . . . 8 (RSpan‘𝐹) = (RSpan‘𝐹)
35 eqid 2736 . . . . . . . 8 (1r𝐹) = (1r𝐹)
3634, 3, 35rsp1 21271 . . . . . . 7 (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r𝐹)}) = (Base‘𝐹))
3733, 36eqtr3id 2790 . . . . . 6 (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
382, 6, 373syl 18 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
3911a1i 11 . . . . . . . 8 (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)))
40 eqidd 2737 . . . . . . . 8 (𝐹 ∈ Field → (1r𝐹) = (1r𝐹))
4139, 40, 16sra1r 33625 . . . . . . 7 (𝐹 ∈ Field → (1r𝐹) = (1r𝑉))
4241sneqd 4644 . . . . . 6 (𝐹 ∈ Field → {(1r𝐹)} = {(1r𝑉)})
4342fveq2d 6915 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝑉)}))
4439, 16srabase 21201 . . . . 5 (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉))
4538, 43, 443eqtr3d 2784 . . . 4 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉))
46 eqid 2736 . . . . 5 (LBasis‘𝑉) = (LBasis‘𝑉)
47 eqid 2736 . . . . 5 (LSpan‘𝑉) = (LSpan‘𝑉)
4819, 46, 47islbs4 21876 . . . 4 ({(1r𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉)))
4929, 45, 48sylanbrc 583 . . 3 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LBasis‘𝑉))
5046dimval 33641 . . 3 ((𝑉 ∈ LVec ∧ {(1r𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r𝑉)}))
5114, 49, 50syl2anc 584 . 2 (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r𝑉)}))
52 fvex 6924 . . 3 (1r𝑉) ∈ V
53 hashsng 14411 . . 3 ((1r𝑉) ∈ V → (♯‘{(1r𝑉)}) = 1)
5452, 53ax-mp 5 . 2 (♯‘{(1r𝑉)}) = 1
5551, 54eqtrdi 2792 1 (𝐹 ∈ Field → (dim‘𝑉) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2107  wne 2939  Vcvv 3479  wss 3964  {csn 4632  cfv 6566  (class class class)co 7435  1c1 11160  chash 14372  Basecbs 17251  s cress 17280  0gc0g 17492  1rcur 20205  Ringcrg 20257  CRingccrg 20258  SubRingcsubrg 20592  DivRingcdr 20752  Fieldcfield 20753  LSpanclspn 20993  LBasisclbs 21097  LVecclvec 21125  subringAlg csra 21194  ringLModcrglmod 21195  RSpancrsp 21241  LIndSclinds 21849  dimcldim 33639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-reg 9636  ax-inf2 9685  ax-ac2 10507  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-tpos 8256  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-oi 9554  df-r1 9808  df-rank 9809  df-card 9983  df-acn 9986  df-ac 10160  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-xnn0 12604  df-z 12618  df-dec 12738  df-uz 12883  df-fz 13551  df-hash 14373  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-sca 17320  df-vsca 17321  df-ip 17322  df-tset 17323  df-ple 17324  df-ocomp 17325  df-0g 17494  df-mre 17637  df-mrc 17638  df-mri 17639  df-acs 17640  df-proset 18358  df-drs 18359  df-poset 18377  df-ipo 18592  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-submnd 18816  df-grp 18973  df-minusg 18974  df-sbg 18975  df-subg 19160  df-cmn 19821  df-abl 19822  df-mgp 20159  df-rng 20177  df-ur 20206  df-ring 20259  df-oppr 20357  df-dvdsr 20380  df-unit 20381  df-invr 20411  df-subrg 20593  df-drng 20754  df-field 20755  df-lmod 20883  df-lss 20954  df-lsp 20994  df-lbs 21098  df-lvec 21126  df-sra 21196  df-rgmod 21197  df-lidl 21242  df-rsp 21243  df-lindf 21850  df-linds 21851  df-dim 33640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator