| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rgmoddimOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rlmdim 33605 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rgmoddimOLD | ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfld 20649 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 2 | 1 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | 3 | ressid 17214 | . . . . 5 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) = 𝐹) |
| 5 | 4, 2 | eqeltrd 2828 | . . . 4 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) ∈ DivRing) |
| 6 | drngring 20645 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 7 | 3 | subrgid 20482 | . . . . 5 ⊢ (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
| 8 | 2, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
| 9 | rlmdim.1 | . . . . . 6 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 10 | rlmval 21098 | . . . . . 6 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 11 | 9, 10 | eqtri 2752 | . . . . 5 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 12 | eqid 2729 | . . . . 5 ⊢ (𝐹 ↾s (Base‘𝐹)) = (𝐹 ↾s (Base‘𝐹)) | |
| 13 | 11, 12 | sralvec 33581 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec) |
| 14 | 2, 5, 8, 13 | syl3anc 1373 | . . 3 ⊢ (𝐹 ∈ Field → 𝑉 ∈ LVec) |
| 15 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ Field → 𝐹 ∈ Ring) |
| 16 | ssidd 3970 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 17 | 11, 3 | sraring 21093 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring) |
| 18 | 15, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ Ring) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 21 | 19, 20 | ringidcl 20174 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 22 | 18, 21 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 23 | 11, 3 | sradrng 33578 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 24 | 2, 16, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ DivRing) |
| 25 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 26 | 25, 20 | drngunz 20656 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 28 | 19, 25 | lindssn 33349 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 29 | 14, 22, 27, 28 | syl3anc 1373 | . . . 4 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 30 | rspval 21121 | . . . . . . . . 9 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 31 | 9 | fveq2i 6861 | . . . . . . . . 9 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 32 | 30, 31 | eqtr4i 2755 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘𝑉) |
| 33 | 32 | fveq1i 6859 | . . . . . . 7 ⊢ ((RSpan‘𝐹)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝐹)}) |
| 34 | eqid 2729 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (RSpan‘𝐹) | |
| 35 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 36 | 34, 3, 35 | rsp1 21147 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 37 | 33, 36 | eqtr3id 2778 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 38 | 2, 6, 37 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 39 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 40 | eqidd 2730 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝐹)) | |
| 41 | 39, 40, 16 | sra1r 33577 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝑉)) |
| 42 | 41 | sneqd 4601 | . . . . . 6 ⊢ (𝐹 ∈ Field → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 43 | 42 | fveq2d 6862 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 44 | 39, 16 | srabase 21084 | . . . . 5 ⊢ (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉)) |
| 45 | 38, 43, 44 | 3eqtr3d 2772 | . . . 4 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 46 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 47 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 48 | 19, 46, 47 | islbs4 21741 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 49 | 29, 45, 48 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 50 | 46 | dimval 33596 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 51 | 14, 49, 50 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 52 | fvex 6871 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 53 | hashsng 14334 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 54 | 52, 53 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 55 | 51, 54 | eqtrdi 2780 | 1 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 1c1 11069 ♯chash 14295 Basecbs 17179 ↾s cress 17200 0gc0g 17402 1rcur 20090 Ringcrg 20142 CRingccrg 20143 SubRingcsubrg 20478 DivRingcdr 20638 Fieldcfield 20639 LSpanclspn 20877 LBasisclbs 20981 LVecclvec 21009 subringAlg csra 21078 ringLModcrglmod 21079 RSpancrsp 21117 LIndSclinds 21714 dimcldim 33594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-r1 9717 df-rank 9718 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ocomp 17241 df-0g 17404 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrg 20479 df-drng 20640 df-field 20641 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lbs 20982 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-lindf 21715 df-linds 21716 df-dim 33595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |