| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rgmoddimOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rlmdim 33601 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
| Ref | Expression |
|---|---|
| rgmoddimOLD | ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfld 20713 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
| 2 | 1 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
| 3 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | 3 | ressid 17271 | . . . . 5 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) = 𝐹) |
| 5 | 4, 2 | eqeltrd 2833 | . . . 4 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) ∈ DivRing) |
| 6 | drngring 20709 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
| 7 | 3 | subrgid 20546 | . . . . 5 ⊢ (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
| 8 | 2, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
| 9 | rlmdim.1 | . . . . . 6 ⊢ 𝑉 = (ringLMod‘𝐹) | |
| 10 | rlmval 21165 | . . . . . 6 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
| 11 | 9, 10 | eqtri 2757 | . . . . 5 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
| 12 | eqid 2734 | . . . . 5 ⊢ (𝐹 ↾s (Base‘𝐹)) = (𝐹 ↾s (Base‘𝐹)) | |
| 13 | 11, 12 | sralvec 33577 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec) |
| 14 | 2, 5, 8, 13 | syl3anc 1372 | . . 3 ⊢ (𝐹 ∈ Field → 𝑉 ∈ LVec) |
| 15 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ Field → 𝐹 ∈ Ring) |
| 16 | ssidd 3989 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
| 17 | 11, 3 | sraring 21160 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring) |
| 18 | 15, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ Ring) |
| 19 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 20 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
| 21 | 19, 20 | ringidcl 20235 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 22 | 18, 21 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ∈ (Base‘𝑉)) |
| 23 | 11, 3 | sradrng 33574 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
| 24 | 2, 16, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ DivRing) |
| 25 | eqid 2734 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 26 | 25, 20 | drngunz 20720 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ≠ (0g‘𝑉)) |
| 28 | 19, 25 | lindssn 33347 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 29 | 14, 22, 27, 28 | syl3anc 1372 | . . . 4 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
| 30 | rspval 21188 | . . . . . . . . 9 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
| 31 | 9 | fveq2i 6890 | . . . . . . . . 9 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
| 32 | 30, 31 | eqtr4i 2760 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘𝑉) |
| 33 | 32 | fveq1i 6888 | . . . . . . 7 ⊢ ((RSpan‘𝐹)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝐹)}) |
| 34 | eqid 2734 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (RSpan‘𝐹) | |
| 35 | eqid 2734 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 36 | 34, 3, 35 | rsp1 21214 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 37 | 33, 36 | eqtr3id 2783 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 38 | 2, 6, 37 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
| 39 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
| 40 | eqidd 2735 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝐹)) | |
| 41 | 39, 40, 16 | sra1r 33573 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝑉)) |
| 42 | 41 | sneqd 4620 | . . . . . 6 ⊢ (𝐹 ∈ Field → {(1r‘𝐹)} = {(1r‘𝑉)}) |
| 43 | 42 | fveq2d 6891 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
| 44 | 39, 16 | srabase 21149 | . . . . 5 ⊢ (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉)) |
| 45 | 38, 43, 44 | 3eqtr3d 2777 | . . . 4 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
| 46 | eqid 2734 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 47 | eqid 2734 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 48 | 19, 46, 47 | islbs4 21819 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
| 49 | 29, 45, 48 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
| 50 | 46 | dimval 33592 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 51 | 14, 49, 50 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
| 52 | fvex 6900 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
| 53 | hashsng 14391 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
| 54 | 52, 53 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
| 55 | 51, 54 | eqtrdi 2785 | 1 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3464 ⊆ wss 3933 {csn 4608 ‘cfv 6542 (class class class)co 7414 1c1 11139 ♯chash 14352 Basecbs 17230 ↾s cress 17256 0gc0g 17460 1rcur 20151 Ringcrg 20203 CRingccrg 20204 SubRingcsubrg 20542 DivRingcdr 20702 Fieldcfield 20703 LSpanclspn 20942 LBasisclbs 21046 LVecclvec 21074 subringAlg csra 21143 ringLModcrglmod 21144 RSpancrsp 21184 LIndSclinds 21792 dimcldim 33590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-reg 9615 ax-inf2 9664 ax-ac2 10486 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9533 df-r1 9787 df-rank 9788 df-card 9962 df-acn 9965 df-ac 10139 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-xnn0 12584 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ocomp 17298 df-0g 17462 df-mre 17605 df-mrc 17606 df-mri 17607 df-acs 17608 df-proset 18315 df-drs 18316 df-poset 18334 df-ipo 18547 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-subrg 20543 df-drng 20704 df-field 20705 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lbs 21047 df-lvec 21075 df-sra 21145 df-rgmod 21146 df-lidl 21185 df-rsp 21186 df-lindf 21793 df-linds 21794 df-dim 33591 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |