Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgmoddimOLD Structured version   Visualization version   GIF version

Theorem rgmoddimOLD 33614
Description: Obsolete version of rlmdim 33613 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rlmdim.1 𝑉 = (ringLMod‘𝐹)
Assertion
Ref Expression
rgmoddimOLD (𝐹 ∈ Field → (dim‘𝑉) = 1)

Proof of Theorem rgmoddimOLD
StepHypRef Expression
1 isfld 20655 . . . . 5 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
21simplbi 497 . . . 4 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
3 eqid 2730 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
43ressid 17220 . . . . 5 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) = 𝐹)
54, 2eqeltrd 2829 . . . 4 (𝐹 ∈ Field → (𝐹s (Base‘𝐹)) ∈ DivRing)
6 drngring 20651 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
73subrgid 20488 . . . . 5 (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹))
82, 6, 73syl 18 . . . 4 (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹))
9 rlmdim.1 . . . . . 6 𝑉 = (ringLMod‘𝐹)
10 rlmval 21104 . . . . . 6 (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹))
119, 10eqtri 2753 . . . . 5 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))
12 eqid 2730 . . . . 5 (𝐹s (Base‘𝐹)) = (𝐹s (Base‘𝐹))
1311, 12sralvec 33589 . . . 4 ((𝐹 ∈ DivRing ∧ (𝐹s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec)
142, 5, 8, 13syl3anc 1373 . . 3 (𝐹 ∈ Field → 𝑉 ∈ LVec)
152, 6syl 17 . . . . . . 7 (𝐹 ∈ Field → 𝐹 ∈ Ring)
16 ssidd 3978 . . . . . . 7 (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹))
1711, 3sraring 21099 . . . . . . 7 ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring)
1815, 16, 17syl2anc 584 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ Ring)
19 eqid 2730 . . . . . . 7 (Base‘𝑉) = (Base‘𝑉)
20 eqid 2730 . . . . . . 7 (1r𝑉) = (1r𝑉)
2119, 20ringidcl 20180 . . . . . 6 (𝑉 ∈ Ring → (1r𝑉) ∈ (Base‘𝑉))
2218, 21syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ∈ (Base‘𝑉))
2311, 3sradrng 33586 . . . . . . 7 ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing)
242, 16, 23syl2anc 584 . . . . . 6 (𝐹 ∈ Field → 𝑉 ∈ DivRing)
25 eqid 2730 . . . . . . 7 (0g𝑉) = (0g𝑉)
2625, 20drngunz 20662 . . . . . 6 (𝑉 ∈ DivRing → (1r𝑉) ≠ (0g𝑉))
2724, 26syl 17 . . . . 5 (𝐹 ∈ Field → (1r𝑉) ≠ (0g𝑉))
2819, 25lindssn 33357 . . . . 5 ((𝑉 ∈ LVec ∧ (1r𝑉) ∈ (Base‘𝑉) ∧ (1r𝑉) ≠ (0g𝑉)) → {(1r𝑉)} ∈ (LIndS‘𝑉))
2914, 22, 27, 28syl3anc 1373 . . . 4 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LIndS‘𝑉))
30 rspval 21127 . . . . . . . . 9 (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹))
319fveq2i 6868 . . . . . . . . 9 (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹))
3230, 31eqtr4i 2756 . . . . . . . 8 (RSpan‘𝐹) = (LSpan‘𝑉)
3332fveq1i 6866 . . . . . . 7 ((RSpan‘𝐹)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝐹)})
34 eqid 2730 . . . . . . . 8 (RSpan‘𝐹) = (RSpan‘𝐹)
35 eqid 2730 . . . . . . . 8 (1r𝐹) = (1r𝐹)
3634, 3, 35rsp1 21153 . . . . . . 7 (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r𝐹)}) = (Base‘𝐹))
3733, 36eqtr3id 2779 . . . . . 6 (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
382, 6, 373syl 18 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = (Base‘𝐹))
3911a1i 11 . . . . . . . 8 (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)))
40 eqidd 2731 . . . . . . . 8 (𝐹 ∈ Field → (1r𝐹) = (1r𝐹))
4139, 40, 16sra1r 33585 . . . . . . 7 (𝐹 ∈ Field → (1r𝐹) = (1r𝑉))
4241sneqd 4609 . . . . . 6 (𝐹 ∈ Field → {(1r𝐹)} = {(1r𝑉)})
4342fveq2d 6869 . . . . 5 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝐹)}) = ((LSpan‘𝑉)‘{(1r𝑉)}))
4439, 16srabase 21090 . . . . 5 (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉))
4538, 43, 443eqtr3d 2773 . . . 4 (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉))
46 eqid 2730 . . . . 5 (LBasis‘𝑉) = (LBasis‘𝑉)
47 eqid 2730 . . . . 5 (LSpan‘𝑉) = (LSpan‘𝑉)
4819, 46, 47islbs4 21747 . . . 4 ({(1r𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r𝑉)}) = (Base‘𝑉)))
4929, 45, 48sylanbrc 583 . . 3 (𝐹 ∈ Field → {(1r𝑉)} ∈ (LBasis‘𝑉))
5046dimval 33604 . . 3 ((𝑉 ∈ LVec ∧ {(1r𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r𝑉)}))
5114, 49, 50syl2anc 584 . 2 (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r𝑉)}))
52 fvex 6878 . . 3 (1r𝑉) ∈ V
53 hashsng 14344 . . 3 ((1r𝑉) ∈ V → (♯‘{(1r𝑉)}) = 1)
5452, 53ax-mp 5 . 2 (♯‘{(1r𝑉)}) = 1
5551, 54eqtrdi 2781 1 (𝐹 ∈ Field → (dim‘𝑉) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2927  Vcvv 3455  wss 3922  {csn 4597  cfv 6519  (class class class)co 7394  1c1 11087  chash 14305  Basecbs 17185  s cress 17206  0gc0g 17408  1rcur 20096  Ringcrg 20148  CRingccrg 20149  SubRingcsubrg 20484  DivRingcdr 20644  Fieldcfield 20645  LSpanclspn 20883  LBasisclbs 20987  LVecclvec 21015  subringAlg csra 21084  ringLModcrglmod 21085  RSpancrsp 21123  LIndSclinds 21720  dimcldim 33602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-reg 9563  ax-inf2 9612  ax-ac2 10434  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-oi 9481  df-r1 9735  df-rank 9736  df-card 9910  df-acn 9913  df-ac 10087  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-hash 14306  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ocomp 17247  df-0g 17410  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-subrg 20485  df-drng 20646  df-field 20647  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lbs 20988  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-lindf 21721  df-linds 21722  df-dim 33603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator