![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rgmoddimOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rlmdim 33650 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rlmdim.1 | ⊢ 𝑉 = (ringLMod‘𝐹) |
Ref | Expression |
---|---|
rgmoddimOLD | ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfld 20763 | . . . . 5 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
2 | 1 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) |
3 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | 3 | ressid 17296 | . . . . 5 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) = 𝐹) |
5 | 4, 2 | eqeltrd 2840 | . . . 4 ⊢ (𝐹 ∈ Field → (𝐹 ↾s (Base‘𝐹)) ∈ DivRing) |
6 | drngring 20759 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) | |
7 | 3 | subrgid 20596 | . . . . 5 ⊢ (𝐹 ∈ Ring → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
8 | 2, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ∈ (SubRing‘𝐹)) |
9 | rlmdim.1 | . . . . . 6 ⊢ 𝑉 = (ringLMod‘𝐹) | |
10 | rlmval 21222 | . . . . . 6 ⊢ (ringLMod‘𝐹) = ((subringAlg ‘𝐹)‘(Base‘𝐹)) | |
11 | 9, 10 | eqtri 2764 | . . . . 5 ⊢ 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹)) |
12 | eqid 2736 | . . . . 5 ⊢ (𝐹 ↾s (Base‘𝐹)) = (𝐹 ↾s (Base‘𝐹)) | |
13 | 11, 12 | sralvec 33628 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s (Base‘𝐹)) ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐹)) → 𝑉 ∈ LVec) |
14 | 2, 5, 8, 13 | syl3anc 1371 | . . 3 ⊢ (𝐹 ∈ Field → 𝑉 ∈ LVec) |
15 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ Field → 𝐹 ∈ Ring) |
16 | ssidd 4020 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (Base‘𝐹) ⊆ (Base‘𝐹)) | |
17 | 11, 3 | sraring 21217 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ Ring) |
18 | 15, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ Ring) |
19 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
20 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝑉) = (1r‘𝑉) | |
21 | 19, 20 | ringidcl 20286 | . . . . . 6 ⊢ (𝑉 ∈ Ring → (1r‘𝑉) ∈ (Base‘𝑉)) |
22 | 18, 21 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ∈ (Base‘𝑉)) |
23 | 11, 3 | sradrng 33626 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ (Base‘𝐹) ⊆ (Base‘𝐹)) → 𝑉 ∈ DivRing) |
24 | 2, 16, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝐹 ∈ Field → 𝑉 ∈ DivRing) |
25 | eqid 2736 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
26 | 25, 20 | drngunz 20770 | . . . . . 6 ⊢ (𝑉 ∈ DivRing → (1r‘𝑉) ≠ (0g‘𝑉)) |
27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Field → (1r‘𝑉) ≠ (0g‘𝑉)) |
28 | 19, 25 | lindssn 33399 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (1r‘𝑉) ∈ (Base‘𝑉) ∧ (1r‘𝑉) ≠ (0g‘𝑉)) → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
29 | 14, 22, 27, 28 | syl3anc 1371 | . . . 4 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LIndS‘𝑉)) |
30 | rspval 21245 | . . . . . . . . 9 ⊢ (RSpan‘𝐹) = (LSpan‘(ringLMod‘𝐹)) | |
31 | 9 | fveq2i 6914 | . . . . . . . . 9 ⊢ (LSpan‘𝑉) = (LSpan‘(ringLMod‘𝐹)) |
32 | 30, 31 | eqtr4i 2767 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (LSpan‘𝑉) |
33 | 32 | fveq1i 6912 | . . . . . . 7 ⊢ ((RSpan‘𝐹)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝐹)}) |
34 | eqid 2736 | . . . . . . . 8 ⊢ (RSpan‘𝐹) = (RSpan‘𝐹) | |
35 | eqid 2736 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
36 | 34, 3, 35 | rsp1 21271 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → ((RSpan‘𝐹)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
37 | 33, 36 | eqtr3id 2790 | . . . . . 6 ⊢ (𝐹 ∈ Ring → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
38 | 2, 6, 37 | 3syl 18 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = (Base‘𝐹)) |
39 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → 𝑉 = ((subringAlg ‘𝐹)‘(Base‘𝐹))) |
40 | eqidd 2737 | . . . . . . . 8 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝐹)) | |
41 | 39, 40, 16 | sra1r 33625 | . . . . . . 7 ⊢ (𝐹 ∈ Field → (1r‘𝐹) = (1r‘𝑉)) |
42 | 41 | sneqd 4644 | . . . . . 6 ⊢ (𝐹 ∈ Field → {(1r‘𝐹)} = {(1r‘𝑉)}) |
43 | 42 | fveq2d 6915 | . . . . 5 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝐹)}) = ((LSpan‘𝑉)‘{(1r‘𝑉)})) |
44 | 39, 16 | srabase 21201 | . . . . 5 ⊢ (𝐹 ∈ Field → (Base‘𝐹) = (Base‘𝑉)) |
45 | 38, 43, 44 | 3eqtr3d 2784 | . . . 4 ⊢ (𝐹 ∈ Field → ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉)) |
46 | eqid 2736 | . . . . 5 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
47 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
48 | 19, 46, 47 | islbs4 21876 | . . . 4 ⊢ ({(1r‘𝑉)} ∈ (LBasis‘𝑉) ↔ ({(1r‘𝑉)} ∈ (LIndS‘𝑉) ∧ ((LSpan‘𝑉)‘{(1r‘𝑉)}) = (Base‘𝑉))) |
49 | 29, 45, 48 | sylanbrc 583 | . . 3 ⊢ (𝐹 ∈ Field → {(1r‘𝑉)} ∈ (LBasis‘𝑉)) |
50 | 46 | dimval 33641 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ {(1r‘𝑉)} ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
51 | 14, 49, 50 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = (♯‘{(1r‘𝑉)})) |
52 | fvex 6924 | . . 3 ⊢ (1r‘𝑉) ∈ V | |
53 | hashsng 14411 | . . 3 ⊢ ((1r‘𝑉) ∈ V → (♯‘{(1r‘𝑉)}) = 1) | |
54 | 52, 53 | ax-mp 5 | . 2 ⊢ (♯‘{(1r‘𝑉)}) = 1 |
55 | 51, 54 | eqtrdi 2792 | 1 ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ⊆ wss 3964 {csn 4632 ‘cfv 6566 (class class class)co 7435 1c1 11160 ♯chash 14372 Basecbs 17251 ↾s cress 17280 0gc0g 17492 1rcur 20205 Ringcrg 20257 CRingccrg 20258 SubRingcsubrg 20592 DivRingcdr 20752 Fieldcfield 20753 LSpanclspn 20993 LBasisclbs 21097 LVecclvec 21125 subringAlg csra 21194 ringLModcrglmod 21195 RSpancrsp 21241 LIndSclinds 21849 dimcldim 33639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-reg 9636 ax-inf2 9685 ax-ac2 10507 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-tpos 8256 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-oi 9554 df-r1 9808 df-rank 9809 df-card 9983 df-acn 9986 df-ac 10160 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-xnn0 12604 df-z 12618 df-dec 12738 df-uz 12883 df-fz 13551 df-hash 14373 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ocomp 17325 df-0g 17494 df-mre 17637 df-mrc 17638 df-mri 17639 df-acs 17640 df-proset 18358 df-drs 18359 df-poset 18377 df-ipo 18592 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-grp 18973 df-minusg 18974 df-sbg 18975 df-subg 19160 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-oppr 20357 df-dvdsr 20380 df-unit 20381 df-invr 20411 df-subrg 20593 df-drng 20754 df-field 20755 df-lmod 20883 df-lss 20954 df-lsp 20994 df-lbs 21098 df-lvec 21126 df-sra 21196 df-rgmod 21197 df-lidl 21242 df-rsp 21243 df-lindf 21850 df-linds 21851 df-dim 33640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |