Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcat | Structured version Visualization version GIF version |
Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
Ref | Expression |
---|---|
drhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ DivRing) |
drhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
fldhmsubc.d | ⊢ 𝐷 = (𝑈 ∩ Field) |
fldhmsubc.f | ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
fldcat | ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfld 20105 | . . . 4 ⊢ (𝑟 ∈ Field ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing)) | |
2 | crngring 19891 | . . . . 5 ⊢ (𝑟 ∈ CRing → 𝑟 ∈ Ring) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing) → 𝑟 ∈ Ring) |
4 | 1, 3 | sylbi 216 | . . 3 ⊢ (𝑟 ∈ Field → 𝑟 ∈ Ring) |
5 | 4 | rgen 3063 | . 2 ⊢ ∀𝑟 ∈ Field 𝑟 ∈ Ring |
6 | fldhmsubc.d | . 2 ⊢ 𝐷 = (𝑈 ∩ Field) | |
7 | fldhmsubc.f | . 2 ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) | |
8 | 5, 6, 7 | sringcat 46053 | 1 ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ cin 3897 ‘cfv 6480 (class class class)co 7338 ∈ cmpo 7340 Catccat 17471 ↾cat cresc 17618 Ringcrg 19879 CRingccrg 19880 RingHom crh 20052 DivRingcdr 20094 Fieldcfield 20095 RingCatcringc 45979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-hom 17084 df-cco 17085 df-0g 17250 df-cat 17475 df-cid 17476 df-homf 17477 df-ssc 17620 df-resc 17621 df-subc 17622 df-estrc 17937 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-grp 18677 df-ghm 18929 df-mgp 19817 df-ur 19834 df-ring 19881 df-cring 19882 df-rnghom 20055 df-field 20097 df-ringc 45981 |
This theorem is referenced by: fldc 46059 |
Copyright terms: Public domain | W3C validator |