Step | Hyp | Ref
| Expression |
1 | | primefld.1 |
. . 3
β’ π = (π
βΎs β© (SubDRingβπ
)) |
2 | | id 22 |
. . 3
β’ (π
β DivRing β π
β
DivRing) |
3 | | issdrg 20396 |
. . . . . 6
β’ (π β (SubDRingβπ
) β (π
β DivRing β§ π β (SubRingβπ
) β§ (π
βΎs π ) β DivRing)) |
4 | 3 | simp2bi 1146 |
. . . . 5
β’ (π β (SubDRingβπ
) β π β (SubRingβπ
)) |
5 | 4 | ssriv 3985 |
. . . 4
β’
(SubDRingβπ
)
β (SubRingβπ
) |
6 | 5 | a1i 11 |
. . 3
β’ (π
β DivRing β
(SubDRingβπ
) β
(SubRingβπ
)) |
7 | | eqid 2732 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
8 | 7 | sdrgid 20400 |
. . . 4
β’ (π
β DivRing β
(Baseβπ
) β
(SubDRingβπ
)) |
9 | 8 | ne0d 4334 |
. . 3
β’ (π
β DivRing β
(SubDRingβπ
) β
β
) |
10 | 3 | simp3bi 1147 |
. . . 4
β’ (π β (SubDRingβπ
) β (π
βΎs π ) β DivRing) |
11 | 10 | adantl 482 |
. . 3
β’ ((π
β DivRing β§ π β (SubDRingβπ
)) β (π
βΎs π ) β DivRing) |
12 | 1, 2, 6, 9, 11 | subdrgint 20411 |
. 2
β’ (π
β DivRing β π β
DivRing) |
13 | | drngring 20314 |
. . . 4
β’ (π β DivRing β π β Ring) |
14 | 12, 13 | syl 17 |
. . 3
β’ (π
β DivRing β π β Ring) |
15 | | ssidd 4004 |
. . . . . . . . . . . . . 14
β’ (π
β DivRing β
(Baseβπ
) β
(Baseβπ
)) |
16 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
17 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(Cntzβ(mulGrpβπ
)) = (Cntzβ(mulGrpβπ
)) |
18 | 7, 16, 17 | cntzsdrg 20410 |
. . . . . . . . . . . . . 14
β’ ((π
β DivRing β§
(Baseβπ
) β
(Baseβπ
)) β
((Cntzβ(mulGrpβπ
))β(Baseβπ
)) β (SubDRingβπ
)) |
19 | 2, 15, 18 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π
β DivRing β
((Cntzβ(mulGrpβπ
))β(Baseβπ
)) β (SubDRingβπ
)) |
20 | | intss1 4966 |
. . . . . . . . . . . . 13
β’
(((Cntzβ(mulGrpβπ
))β(Baseβπ
)) β (SubDRingβπ
) β β©
(SubDRingβπ
) β
((Cntzβ(mulGrpβπ
))β(Baseβπ
))) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
β’ (π
β DivRing β β© (SubDRingβπ
) β ((Cntzβ(mulGrpβπ
))β(Baseβπ
))) |
22 | 16, 7 | mgpbas 19987 |
. . . . . . . . . . . . 13
β’
(Baseβπ
) =
(Baseβ(mulGrpβπ
)) |
23 | 22, 17 | cntrval 19177 |
. . . . . . . . . . . 12
β’
((Cntzβ(mulGrpβπ
))β(Baseβπ
)) = (Cntrβ(mulGrpβπ
)) |
24 | 21, 23 | sseqtrdi 4031 |
. . . . . . . . . . 11
β’ (π
β DivRing β β© (SubDRingβπ
) β (Cntrβ(mulGrpβπ
))) |
25 | 22 | cntrss 19189 |
. . . . . . . . . . 11
β’
(Cntrβ(mulGrpβπ
)) β (Baseβπ
) |
26 | 24, 25 | sstrdi 3993 |
. . . . . . . . . 10
β’ (π
β DivRing β β© (SubDRingβπ
) β (Baseβπ
)) |
27 | 1, 7 | ressbas2 17178 |
. . . . . . . . . 10
β’ (β© (SubDRingβπ
) β (Baseβπ
) β β©
(SubDRingβπ
) =
(Baseβπ)) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
β’ (π
β DivRing β β© (SubDRingβπ
) = (Baseβπ)) |
29 | 28, 24 | eqsstrrd 4020 |
. . . . . . . 8
β’ (π
β DivRing β
(Baseβπ) β
(Cntrβ(mulGrpβπ
))) |
30 | 29 | adantr 481 |
. . . . . . 7
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (Baseβπ) β (Cntrβ(mulGrpβπ
))) |
31 | | simprl 769 |
. . . . . . 7
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β π₯ β (Baseβπ)) |
32 | 30, 31 | sseldd 3982 |
. . . . . 6
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β π₯ β (Cntrβ(mulGrpβπ
))) |
33 | 28, 26 | eqsstrrd 4020 |
. . . . . . . 8
β’ (π
β DivRing β
(Baseβπ) β
(Baseβπ
)) |
34 | 33 | adantr 481 |
. . . . . . 7
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (Baseβπ) β (Baseβπ
)) |
35 | | simprr 771 |
. . . . . . 7
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β π¦ β (Baseβπ)) |
36 | 34, 35 | sseldd 3982 |
. . . . . 6
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β π¦ β (Baseβπ
)) |
37 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ
) = (.rβπ
) |
38 | 16, 37 | mgpplusg 19985 |
. . . . . . 7
β’
(.rβπ
) = (+gβ(mulGrpβπ
)) |
39 | | eqid 2732 |
. . . . . . 7
β’
(Cntrβ(mulGrpβπ
)) = (Cntrβ(mulGrpβπ
)) |
40 | 22, 38, 39 | cntri 19190 |
. . . . . 6
β’ ((π₯ β
(Cntrβ(mulGrpβπ
)) β§ π¦ β (Baseβπ
)) β (π₯(.rβπ
)π¦) = (π¦(.rβπ
)π₯)) |
41 | 32, 36, 40 | syl2anc 584 |
. . . . 5
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(.rβπ
)π¦) = (π¦(.rβπ
)π₯)) |
42 | 8, 26 | ssexd 5323 |
. . . . . . 7
β’ (π
β DivRing β β© (SubDRingβπ
) β V) |
43 | 1, 37 | ressmulr 17248 |
. . . . . . 7
β’ (β© (SubDRingβπ
) β V β (.rβπ
) = (.rβπ)) |
44 | 42, 43 | syl 17 |
. . . . . 6
β’ (π
β DivRing β
(.rβπ
) =
(.rβπ)) |
45 | 44 | oveqdr 7433 |
. . . . 5
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(.rβπ
)π¦) = (π₯(.rβπ)π¦)) |
46 | 44 | oveqdr 7433 |
. . . . 5
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π¦(.rβπ
)π₯) = (π¦(.rβπ)π₯)) |
47 | 41, 45, 46 | 3eqtr3d 2780 |
. . . 4
β’ ((π
β DivRing β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
48 | 47 | ralrimivva 3200 |
. . 3
β’ (π
β DivRing β
βπ₯ β
(Baseβπ)βπ¦ β (Baseβπ)(π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
49 | | eqid 2732 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
50 | | eqid 2732 |
. . . 4
β’
(.rβπ) = (.rβπ) |
51 | 49, 50 | iscrng2 20068 |
. . 3
β’ (π β CRing β (π β Ring β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(π₯(.rβπ)π¦) = (π¦(.rβπ)π₯))) |
52 | 14, 48, 51 | sylanbrc 583 |
. 2
β’ (π
β DivRing β π β CRing) |
53 | | isfld 20318 |
. 2
β’ (π β Field β (π β DivRing β§ π β CRing)) |
54 | 12, 52, 53 | sylanbrc 583 |
1
β’ (π
β DivRing β π β Field) |