MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  primefld Structured version   Visualization version   GIF version

Theorem primefld 20714
Description: The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
primefld.1 𝑃 = (𝑅s (SubDRing‘𝑅))
Assertion
Ref Expression
primefld (𝑅 ∈ DivRing → 𝑃 ∈ Field)

Proof of Theorem primefld
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primefld.1 . . 3 𝑃 = (𝑅s (SubDRing‘𝑅))
2 id 22 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
3 issdrg 20697 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
43simp2bi 1146 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
54ssriv 3950 . . . 4 (SubDRing‘𝑅) ⊆ (SubRing‘𝑅)
65a1i 11 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (SubRing‘𝑅))
7 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
87sdrgid 20701 . . . 4 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
98ne0d 4305 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ≠ ∅)
103simp3bi 1147 . . . 4 (𝑠 ∈ (SubDRing‘𝑅) → (𝑅s 𝑠) ∈ DivRing)
1110adantl 481 . . 3 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubDRing‘𝑅)) → (𝑅s 𝑠) ∈ DivRing)
121, 2, 6, 9, 11subdrgint 20712 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ DivRing)
13 drngring 20645 . . . 4 (𝑃 ∈ DivRing → 𝑃 ∈ Ring)
1412, 13syl 17 . . 3 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
15 ssidd 3970 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (Base‘𝑅) ⊆ (Base‘𝑅))
16 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
17 eqid 2729 . . . . . . . . . . . . . . 15 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
187, 16, 17cntzsdrg 20711 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
192, 15, 18syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
20 intss1 4927 . . . . . . . . . . . . 13 (((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅) → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2216, 7mgpbas 20054 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2322, 17cntrval 19251 . . . . . . . . . . . 12 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
2421, 23sseqtrdi 3987 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Cntr‘(mulGrp‘𝑅)))
2522cntrss 19263 . . . . . . . . . . 11 (Cntr‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅)
2624, 25sstrdi 3959 . . . . . . . . . 10 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Base‘𝑅))
271, 7ressbas2 17208 . . . . . . . . . 10 ( (SubDRing‘𝑅) ⊆ (Base‘𝑅) → (SubDRing‘𝑅) = (Base‘𝑃))
2826, 27syl 17 . . . . . . . . 9 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = (Base‘𝑃))
2928, 24eqsstrrd 3982 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
3029adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
31 simprl 770 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Base‘𝑃))
3230, 31sseldd 3947 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Cntr‘(mulGrp‘𝑅)))
3328, 26eqsstrrd 3982 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Base‘𝑅))
3433adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Base‘𝑅))
35 simprr 772 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑃))
3634, 35sseldd 3947 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑅))
37 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3816, 37mgpplusg 20053 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
39 eqid 2729 . . . . . . 7 (Cntr‘(mulGrp‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
4022, 38, 39cntri 19264 . . . . . 6 ((𝑥 ∈ (Cntr‘(mulGrp‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
4132, 36, 40syl2anc 584 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
428, 26ssexd 5279 . . . . . . 7 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ V)
431, 37ressmulr 17270 . . . . . . 7 ( (SubDRing‘𝑅) ∈ V → (.r𝑅) = (.r𝑃))
4442, 43syl 17 . . . . . 6 (𝑅 ∈ DivRing → (.r𝑅) = (.r𝑃))
4544oveqdr 7415 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑃)𝑦))
4644oveqdr 7415 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑦(.r𝑅)𝑥) = (𝑦(.r𝑃)𝑥))
4741, 45, 463eqtr3d 2772 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
4847ralrimivva 3180 . . 3 (𝑅 ∈ DivRing → ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
49 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
50 eqid 2729 . . . 4 (.r𝑃) = (.r𝑃)
5149, 50iscrng2 20161 . . 3 (𝑃 ∈ CRing ↔ (𝑃 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥)))
5214, 48, 51sylanbrc 583 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ CRing)
53 isfld 20649 . 2 (𝑃 ∈ Field ↔ (𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing))
5412, 52, 53sylanbrc 583 1 (𝑅 ∈ DivRing → 𝑃 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914   cint 4910  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  .rcmulr 17221  Cntzccntz 19247  Cntrccntr 19248  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  SubDRingcsdrg 20695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-subg 19055  df-cntz 19249  df-cntr 19250  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-sdrg 20696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator