MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  primefld Structured version   Visualization version   GIF version

Theorem primefld 20806
Description: The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
primefld.1 𝑃 = (𝑅s (SubDRing‘𝑅))
Assertion
Ref Expression
primefld (𝑅 ∈ DivRing → 𝑃 ∈ Field)

Proof of Theorem primefld
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primefld.1 . . 3 𝑃 = (𝑅s (SubDRing‘𝑅))
2 id 22 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
3 issdrg 20789 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
43simp2bi 1147 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
54ssriv 3987 . . . 4 (SubDRing‘𝑅) ⊆ (SubRing‘𝑅)
65a1i 11 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (SubRing‘𝑅))
7 eqid 2737 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
87sdrgid 20793 . . . 4 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
98ne0d 4342 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ≠ ∅)
103simp3bi 1148 . . . 4 (𝑠 ∈ (SubDRing‘𝑅) → (𝑅s 𝑠) ∈ DivRing)
1110adantl 481 . . 3 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubDRing‘𝑅)) → (𝑅s 𝑠) ∈ DivRing)
121, 2, 6, 9, 11subdrgint 20804 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ DivRing)
13 drngring 20736 . . . 4 (𝑃 ∈ DivRing → 𝑃 ∈ Ring)
1412, 13syl 17 . . 3 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
15 ssidd 4007 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (Base‘𝑅) ⊆ (Base‘𝑅))
16 eqid 2737 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
17 eqid 2737 . . . . . . . . . . . . . . 15 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
187, 16, 17cntzsdrg 20803 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
192, 15, 18syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
20 intss1 4963 . . . . . . . . . . . . 13 (((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅) → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2216, 7mgpbas 20142 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2322, 17cntrval 19337 . . . . . . . . . . . 12 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
2421, 23sseqtrdi 4024 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Cntr‘(mulGrp‘𝑅)))
2522cntrss 19349 . . . . . . . . . . 11 (Cntr‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅)
2624, 25sstrdi 3996 . . . . . . . . . 10 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Base‘𝑅))
271, 7ressbas2 17283 . . . . . . . . . 10 ( (SubDRing‘𝑅) ⊆ (Base‘𝑅) → (SubDRing‘𝑅) = (Base‘𝑃))
2826, 27syl 17 . . . . . . . . 9 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = (Base‘𝑃))
2928, 24eqsstrrd 4019 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
3029adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
31 simprl 771 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Base‘𝑃))
3230, 31sseldd 3984 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Cntr‘(mulGrp‘𝑅)))
3328, 26eqsstrrd 4019 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Base‘𝑅))
3433adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Base‘𝑅))
35 simprr 773 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑃))
3634, 35sseldd 3984 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑅))
37 eqid 2737 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3816, 37mgpplusg 20141 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
39 eqid 2737 . . . . . . 7 (Cntr‘(mulGrp‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
4022, 38, 39cntri 19350 . . . . . 6 ((𝑥 ∈ (Cntr‘(mulGrp‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
4132, 36, 40syl2anc 584 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
428, 26ssexd 5324 . . . . . . 7 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ V)
431, 37ressmulr 17351 . . . . . . 7 ( (SubDRing‘𝑅) ∈ V → (.r𝑅) = (.r𝑃))
4442, 43syl 17 . . . . . 6 (𝑅 ∈ DivRing → (.r𝑅) = (.r𝑃))
4544oveqdr 7459 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑃)𝑦))
4644oveqdr 7459 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑦(.r𝑅)𝑥) = (𝑦(.r𝑃)𝑥))
4741, 45, 463eqtr3d 2785 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
4847ralrimivva 3202 . . 3 (𝑅 ∈ DivRing → ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
49 eqid 2737 . . . 4 (Base‘𝑃) = (Base‘𝑃)
50 eqid 2737 . . . 4 (.r𝑃) = (.r𝑃)
5149, 50iscrng2 20249 . . 3 (𝑃 ∈ CRing ↔ (𝑃 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥)))
5214, 48, 51sylanbrc 583 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ CRing)
53 isfld 20740 . 2 (𝑃 ∈ Field ↔ (𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing))
5412, 52, 53sylanbrc 583 1 (𝑅 ∈ DivRing → 𝑃 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951   cint 4946  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  Cntzccntz 19333  Cntrccntr 19334  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231  SubRingcsubrg 20569  DivRingcdr 20729  Fieldcfield 20730  SubDRingcsdrg 20787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-subg 19141  df-cntz 19335  df-cntr 19336  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-sdrg 20788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator