MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  primefld Structured version   Visualization version   GIF version

Theorem primefld 20725
Description: The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
primefld.1 𝑃 = (𝑅s (SubDRing‘𝑅))
Assertion
Ref Expression
primefld (𝑅 ∈ DivRing → 𝑃 ∈ Field)

Proof of Theorem primefld
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primefld.1 . . 3 𝑃 = (𝑅s (SubDRing‘𝑅))
2 id 22 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
3 issdrg 20708 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
43simp2bi 1146 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
54ssriv 3947 . . . 4 (SubDRing‘𝑅) ⊆ (SubRing‘𝑅)
65a1i 11 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (SubRing‘𝑅))
7 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
87sdrgid 20712 . . . 4 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
98ne0d 4301 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ≠ ∅)
103simp3bi 1147 . . . 4 (𝑠 ∈ (SubDRing‘𝑅) → (𝑅s 𝑠) ∈ DivRing)
1110adantl 481 . . 3 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubDRing‘𝑅)) → (𝑅s 𝑠) ∈ DivRing)
121, 2, 6, 9, 11subdrgint 20723 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ DivRing)
13 drngring 20656 . . . 4 (𝑃 ∈ DivRing → 𝑃 ∈ Ring)
1412, 13syl 17 . . 3 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
15 ssidd 3967 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (Base‘𝑅) ⊆ (Base‘𝑅))
16 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
17 eqid 2729 . . . . . . . . . . . . . . 15 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
187, 16, 17cntzsdrg 20722 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
192, 15, 18syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
20 intss1 4923 . . . . . . . . . . . . 13 (((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅) → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2216, 7mgpbas 20065 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2322, 17cntrval 19233 . . . . . . . . . . . 12 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
2421, 23sseqtrdi 3984 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Cntr‘(mulGrp‘𝑅)))
2522cntrss 19245 . . . . . . . . . . 11 (Cntr‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅)
2624, 25sstrdi 3956 . . . . . . . . . 10 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Base‘𝑅))
271, 7ressbas2 17184 . . . . . . . . . 10 ( (SubDRing‘𝑅) ⊆ (Base‘𝑅) → (SubDRing‘𝑅) = (Base‘𝑃))
2826, 27syl 17 . . . . . . . . 9 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = (Base‘𝑃))
2928, 24eqsstrrd 3979 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
3029adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
31 simprl 770 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Base‘𝑃))
3230, 31sseldd 3944 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Cntr‘(mulGrp‘𝑅)))
3328, 26eqsstrrd 3979 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Base‘𝑅))
3433adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Base‘𝑅))
35 simprr 772 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑃))
3634, 35sseldd 3944 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑅))
37 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3816, 37mgpplusg 20064 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
39 eqid 2729 . . . . . . 7 (Cntr‘(mulGrp‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
4022, 38, 39cntri 19246 . . . . . 6 ((𝑥 ∈ (Cntr‘(mulGrp‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
4132, 36, 40syl2anc 584 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
428, 26ssexd 5274 . . . . . . 7 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ V)
431, 37ressmulr 17246 . . . . . . 7 ( (SubDRing‘𝑅) ∈ V → (.r𝑅) = (.r𝑃))
4442, 43syl 17 . . . . . 6 (𝑅 ∈ DivRing → (.r𝑅) = (.r𝑃))
4544oveqdr 7397 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑃)𝑦))
4644oveqdr 7397 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑦(.r𝑅)𝑥) = (𝑦(.r𝑃)𝑥))
4741, 45, 463eqtr3d 2772 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
4847ralrimivva 3178 . . 3 (𝑅 ∈ DivRing → ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
49 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
50 eqid 2729 . . . 4 (.r𝑃) = (.r𝑃)
5149, 50iscrng2 20172 . . 3 (𝑃 ∈ CRing ↔ (𝑃 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥)))
5214, 48, 51sylanbrc 583 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ CRing)
53 isfld 20660 . 2 (𝑃 ∈ Field ↔ (𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing))
5412, 52, 53sylanbrc 583 1 (𝑅 ∈ DivRing → 𝑃 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911   cint 4906  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  .rcmulr 17197  Cntzccntz 19229  Cntrccntr 19230  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  SubRingcsubrg 20489  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-subg 19037  df-cntz 19231  df-cntr 19232  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-subrng 20466  df-subrg 20490  df-drng 20651  df-field 20652  df-sdrg 20707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator