MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  primefld Structured version   Visualization version   GIF version

Theorem primefld 19577
Description: The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
primefld.1 𝑃 = (𝑅s (SubDRing‘𝑅))
Assertion
Ref Expression
primefld (𝑅 ∈ DivRing → 𝑃 ∈ Field)

Proof of Theorem primefld
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primefld.1 . . 3 𝑃 = (𝑅s (SubDRing‘𝑅))
2 id 22 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
3 issdrg 19567 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
43simp2bi 1143 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
54ssriv 3919 . . . 4 (SubDRing‘𝑅) ⊆ (SubRing‘𝑅)
65a1i 11 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (SubRing‘𝑅))
7 eqid 2798 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
87sdrgid 19568 . . . 4 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
98ne0d 4251 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ≠ ∅)
103simp3bi 1144 . . . 4 (𝑠 ∈ (SubDRing‘𝑅) → (𝑅s 𝑠) ∈ DivRing)
1110adantl 485 . . 3 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubDRing‘𝑅)) → (𝑅s 𝑠) ∈ DivRing)
121, 2, 6, 9, 11subdrgint 19575 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ DivRing)
13 drngring 19502 . . . 4 (𝑃 ∈ DivRing → 𝑃 ∈ Ring)
1412, 13syl 17 . . 3 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
15 ssidd 3938 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (Base‘𝑅) ⊆ (Base‘𝑅))
16 eqid 2798 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
17 eqid 2798 . . . . . . . . . . . . . . 15 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
187, 16, 17cntzsdrg 19574 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
192, 15, 18syl2anc 587 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
20 intss1 4853 . . . . . . . . . . . . 13 (((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅) → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2216, 7mgpbas 19238 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2322, 17cntrval 18441 . . . . . . . . . . . 12 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
2421, 23sseqtrdi 3965 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Cntr‘(mulGrp‘𝑅)))
2522cntrss 18452 . . . . . . . . . . 11 (Cntr‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅)
2624, 25sstrdi 3927 . . . . . . . . . 10 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Base‘𝑅))
271, 7ressbas2 16547 . . . . . . . . . 10 ( (SubDRing‘𝑅) ⊆ (Base‘𝑅) → (SubDRing‘𝑅) = (Base‘𝑃))
2826, 27syl 17 . . . . . . . . 9 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = (Base‘𝑃))
2928, 24eqsstrrd 3954 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
3029adantr 484 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
31 simprl 770 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Base‘𝑃))
3230, 31sseldd 3916 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Cntr‘(mulGrp‘𝑅)))
3328, 26eqsstrrd 3954 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Base‘𝑅))
3433adantr 484 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Base‘𝑅))
35 simprr 772 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑃))
3634, 35sseldd 3916 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑅))
37 eqid 2798 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3816, 37mgpplusg 19236 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
39 eqid 2798 . . . . . . 7 (Cntr‘(mulGrp‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
4022, 38, 39cntri 18453 . . . . . 6 ((𝑥 ∈ (Cntr‘(mulGrp‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
4132, 36, 40syl2anc 587 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
428, 26ssexd 5192 . . . . . . 7 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ V)
431, 37ressmulr 16617 . . . . . . 7 ( (SubDRing‘𝑅) ∈ V → (.r𝑅) = (.r𝑃))
4442, 43syl 17 . . . . . 6 (𝑅 ∈ DivRing → (.r𝑅) = (.r𝑃))
4544oveqdr 7163 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑃)𝑦))
4644oveqdr 7163 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑦(.r𝑅)𝑥) = (𝑦(.r𝑃)𝑥))
4741, 45, 463eqtr3d 2841 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
4847ralrimivva 3156 . . 3 (𝑅 ∈ DivRing → ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
49 eqid 2798 . . . 4 (Base‘𝑃) = (Base‘𝑃)
50 eqid 2798 . . . 4 (.r𝑃) = (.r𝑃)
5149, 50iscrng2 19309 . . 3 (𝑃 ∈ CRing ↔ (𝑃 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥)))
5214, 48, 51sylanbrc 586 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ CRing)
53 isfld 19504 . 2 (𝑃 ∈ Field ↔ (𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing))
5412, 52, 53sylanbrc 586 1 (𝑅 ∈ DivRing → 𝑃 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881   cint 4838  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  .rcmulr 16558  Cntzccntz 18437  Cntrccntr 18438  mulGrpcmgp 19232  Ringcrg 19290  CRingccrg 19291  DivRingcdr 19495  Fieldcfield 19496  SubRingcsubrg 19524  SubDRingcsdrg 19565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-subg 18268  df-cntz 18439  df-cntr 18440  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-field 19498  df-subrg 19526  df-sdrg 19566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator