MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  primefld Structured version   Visualization version   GIF version

Theorem primefld 20765
Description: The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
primefld.1 𝑃 = (𝑅s (SubDRing‘𝑅))
Assertion
Ref Expression
primefld (𝑅 ∈ DivRing → 𝑃 ∈ Field)

Proof of Theorem primefld
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 primefld.1 . . 3 𝑃 = (𝑅s (SubDRing‘𝑅))
2 id 22 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ DivRing)
3 issdrg 20748 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
43simp2bi 1146 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
54ssriv 3962 . . . 4 (SubDRing‘𝑅) ⊆ (SubRing‘𝑅)
65a1i 11 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (SubRing‘𝑅))
7 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
87sdrgid 20752 . . . 4 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
98ne0d 4317 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ≠ ∅)
103simp3bi 1147 . . . 4 (𝑠 ∈ (SubDRing‘𝑅) → (𝑅s 𝑠) ∈ DivRing)
1110adantl 481 . . 3 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubDRing‘𝑅)) → (𝑅s 𝑠) ∈ DivRing)
121, 2, 6, 9, 11subdrgint 20763 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ DivRing)
13 drngring 20696 . . . 4 (𝑃 ∈ DivRing → 𝑃 ∈ Ring)
1412, 13syl 17 . . 3 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
15 ssidd 3982 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (Base‘𝑅) ⊆ (Base‘𝑅))
16 eqid 2735 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
17 eqid 2735 . . . . . . . . . . . . . . 15 (Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅))
187, 16, 17cntzsdrg 20762 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ (Base‘𝑅) ⊆ (Base‘𝑅)) → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
192, 15, 18syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅))
20 intss1 4939 . . . . . . . . . . . . 13 (((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅) → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2119, 20syl 17 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)))
2216, 7mgpbas 20105 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2322, 17cntrval 19302 . . . . . . . . . . . 12 ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
2421, 23sseqtrdi 3999 . . . . . . . . . . 11 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Cntr‘(mulGrp‘𝑅)))
2522cntrss 19314 . . . . . . . . . . 11 (Cntr‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅)
2624, 25sstrdi 3971 . . . . . . . . . 10 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (Base‘𝑅))
271, 7ressbas2 17259 . . . . . . . . . 10 ( (SubDRing‘𝑅) ⊆ (Base‘𝑅) → (SubDRing‘𝑅) = (Base‘𝑃))
2826, 27syl 17 . . . . . . . . 9 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = (Base‘𝑃))
2928, 24eqsstrrd 3994 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
3029adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅)))
31 simprl 770 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Base‘𝑃))
3230, 31sseldd 3959 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Cntr‘(mulGrp‘𝑅)))
3328, 26eqsstrrd 3994 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑃) ⊆ (Base‘𝑅))
3433adantr 480 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Base‘𝑅))
35 simprr 772 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑃))
3634, 35sseldd 3959 . . . . . 6 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑅))
37 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3816, 37mgpplusg 20104 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
39 eqid 2735 . . . . . . 7 (Cntr‘(mulGrp‘𝑅)) = (Cntr‘(mulGrp‘𝑅))
4022, 38, 39cntri 19315 . . . . . 6 ((𝑥 ∈ (Cntr‘(mulGrp‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
4132, 36, 40syl2anc 584 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
428, 26ssexd 5294 . . . . . . 7 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ V)
431, 37ressmulr 17321 . . . . . . 7 ( (SubDRing‘𝑅) ∈ V → (.r𝑅) = (.r𝑃))
4442, 43syl 17 . . . . . 6 (𝑅 ∈ DivRing → (.r𝑅) = (.r𝑃))
4544oveqdr 7433 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑃)𝑦))
4644oveqdr 7433 . . . . 5 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑦(.r𝑅)𝑥) = (𝑦(.r𝑃)𝑥))
4741, 45, 463eqtr3d 2778 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
4847ralrimivva 3187 . . 3 (𝑅 ∈ DivRing → ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥))
49 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
50 eqid 2735 . . . 4 (.r𝑃) = (.r𝑃)
5149, 50iscrng2 20212 . . 3 (𝑃 ∈ CRing ↔ (𝑃 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r𝑃)𝑦) = (𝑦(.r𝑃)𝑥)))
5214, 48, 51sylanbrc 583 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ CRing)
53 isfld 20700 . 2 (𝑃 ∈ Field ↔ (𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing))
5412, 52, 53sylanbrc 583 1 (𝑅 ∈ DivRing → 𝑃 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926   cint 4922  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  .rcmulr 17272  Cntzccntz 19298  Cntrccntr 19299  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194  SubRingcsubrg 20529  DivRingcdr 20689  Fieldcfield 20690  SubDRingcsdrg 20746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-subg 19106  df-cntz 19300  df-cntr 19301  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-sdrg 20747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator