| Step | Hyp | Ref
| Expression |
| 1 | | primefld.1 |
. . 3
⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) |
| 2 | | id 22 |
. . 3
⊢ (𝑅 ∈ DivRing → 𝑅 ∈
DivRing) |
| 3 | | issdrg 20789 |
. . . . . 6
⊢ (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑠) ∈ DivRing)) |
| 4 | 3 | simp2bi 1147 |
. . . . 5
⊢ (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅)) |
| 5 | 4 | ssriv 3987 |
. . . 4
⊢
(SubDRing‘𝑅)
⊆ (SubRing‘𝑅) |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝑅 ∈ DivRing →
(SubDRing‘𝑅) ⊆
(SubRing‘𝑅)) |
| 7 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | 7 | sdrgid 20793 |
. . . 4
⊢ (𝑅 ∈ DivRing →
(Base‘𝑅) ∈
(SubDRing‘𝑅)) |
| 9 | 8 | ne0d 4342 |
. . 3
⊢ (𝑅 ∈ DivRing →
(SubDRing‘𝑅) ≠
∅) |
| 10 | 3 | simp3bi 1148 |
. . . 4
⊢ (𝑠 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝑠) ∈ DivRing) |
| 11 | 10 | adantl 481 |
. . 3
⊢ ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubDRing‘𝑅)) → (𝑅 ↾s 𝑠) ∈ DivRing) |
| 12 | 1, 2, 6, 9, 11 | subdrgint 20804 |
. 2
⊢ (𝑅 ∈ DivRing → 𝑃 ∈
DivRing) |
| 13 | | drngring 20736 |
. . . 4
⊢ (𝑃 ∈ DivRing → 𝑃 ∈ Ring) |
| 14 | 12, 13 | syl 17 |
. . 3
⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Ring) |
| 15 | | ssidd 4007 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ DivRing →
(Base‘𝑅) ⊆
(Base‘𝑅)) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 17 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Cntz‘(mulGrp‘𝑅)) = (Cntz‘(mulGrp‘𝑅)) |
| 18 | 7, 16, 17 | cntzsdrg 20803 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧
(Base‘𝑅) ⊆
(Base‘𝑅)) →
((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅)) |
| 19 | 2, 15, 18 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ DivRing →
((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅)) |
| 20 | | intss1 4963 |
. . . . . . . . . . . . 13
⊢
(((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) ∈ (SubDRing‘𝑅) → ∩
(SubDRing‘𝑅) ⊆
((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅))) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ DivRing → ∩ (SubDRing‘𝑅) ⊆ ((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅))) |
| 22 | 16, 7 | mgpbas 20142 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
| 23 | 22, 17 | cntrval 19337 |
. . . . . . . . . . . 12
⊢
((Cntz‘(mulGrp‘𝑅))‘(Base‘𝑅)) = (Cntr‘(mulGrp‘𝑅)) |
| 24 | 21, 23 | sseqtrdi 4024 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ DivRing → ∩ (SubDRing‘𝑅) ⊆ (Cntr‘(mulGrp‘𝑅))) |
| 25 | 22 | cntrss 19349 |
. . . . . . . . . . 11
⊢
(Cntr‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅) |
| 26 | 24, 25 | sstrdi 3996 |
. . . . . . . . . 10
⊢ (𝑅 ∈ DivRing → ∩ (SubDRing‘𝑅) ⊆ (Base‘𝑅)) |
| 27 | 1, 7 | ressbas2 17283 |
. . . . . . . . . 10
⊢ (∩ (SubDRing‘𝑅) ⊆ (Base‘𝑅) → ∩
(SubDRing‘𝑅) =
(Base‘𝑃)) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ DivRing → ∩ (SubDRing‘𝑅) = (Base‘𝑃)) |
| 29 | 28, 24 | eqsstrrd 4019 |
. . . . . . . 8
⊢ (𝑅 ∈ DivRing →
(Base‘𝑃) ⊆
(Cntr‘(mulGrp‘𝑅))) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Cntr‘(mulGrp‘𝑅))) |
| 31 | | simprl 771 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Base‘𝑃)) |
| 32 | 30, 31 | sseldd 3984 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑥 ∈ (Cntr‘(mulGrp‘𝑅))) |
| 33 | 28, 26 | eqsstrrd 4019 |
. . . . . . . 8
⊢ (𝑅 ∈ DivRing →
(Base‘𝑃) ⊆
(Base‘𝑅)) |
| 34 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (Base‘𝑃) ⊆ (Base‘𝑅)) |
| 35 | | simprr 773 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑃)) |
| 36 | 34, 35 | sseldd 3984 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → 𝑦 ∈ (Base‘𝑅)) |
| 37 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 38 | 16, 37 | mgpplusg 20141 |
. . . . . . 7
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 39 | | eqid 2737 |
. . . . . . 7
⊢
(Cntr‘(mulGrp‘𝑅)) = (Cntr‘(mulGrp‘𝑅)) |
| 40 | 22, 38, 39 | cntri 19350 |
. . . . . 6
⊢ ((𝑥 ∈
(Cntr‘(mulGrp‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
| 41 | 32, 36, 40 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
| 42 | 8, 26 | ssexd 5324 |
. . . . . . 7
⊢ (𝑅 ∈ DivRing → ∩ (SubDRing‘𝑅) ∈ V) |
| 43 | 1, 37 | ressmulr 17351 |
. . . . . . 7
⊢ (∩ (SubDRing‘𝑅) ∈ V → (.r‘𝑅) = (.r‘𝑃)) |
| 44 | 42, 43 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ DivRing →
(.r‘𝑅) =
(.r‘𝑃)) |
| 45 | 44 | oveqdr 7459 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑃)𝑦)) |
| 46 | 44 | oveqdr 7459 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑦(.r‘𝑅)𝑥) = (𝑦(.r‘𝑃)𝑥)) |
| 47 | 41, 45, 46 | 3eqtr3d 2785 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑃)𝑦) = (𝑦(.r‘𝑃)𝑥)) |
| 48 | 47 | ralrimivva 3202 |
. . 3
⊢ (𝑅 ∈ DivRing →
∀𝑥 ∈
(Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r‘𝑃)𝑦) = (𝑦(.r‘𝑃)𝑥)) |
| 49 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 50 | | eqid 2737 |
. . . 4
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 51 | 49, 50 | iscrng2 20249 |
. . 3
⊢ (𝑃 ∈ CRing ↔ (𝑃 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑃)∀𝑦 ∈ (Base‘𝑃)(𝑥(.r‘𝑃)𝑦) = (𝑦(.r‘𝑃)𝑥))) |
| 52 | 14, 48, 51 | sylanbrc 583 |
. 2
⊢ (𝑅 ∈ DivRing → 𝑃 ∈ CRing) |
| 53 | | isfld 20740 |
. 2
⊢ (𝑃 ∈ Field ↔ (𝑃 ∈ DivRing ∧ 𝑃 ∈ CRing)) |
| 54 | 12, 52, 53 | sylanbrc 583 |
1
⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Field) |