Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcatALTV Structured version   Visualization version   GIF version

Theorem fldcatALTV 44663
 Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
drhmsubcALTV.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubcALTV.d 𝐷 = (𝑈 ∩ Field)
fldhmsubcALTV.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldcatALTV (𝑈𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat)
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldcatALTV
StepHypRef Expression
1 isfld 19502 . . . 4 (𝑟 ∈ Field ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
2 crngring 19300 . . . . 5 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
32adantl 485 . . . 4 ((𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing) → 𝑟 ∈ Ring)
41, 3sylbi 220 . . 3 (𝑟 ∈ Field → 𝑟 ∈ Ring)
54rgen 3140 . 2 𝑟 ∈ Field 𝑟 ∈ Ring
6 fldhmsubcALTV.d . 2 𝐷 = (𝑈 ∩ Field)
7 fldhmsubcALTV.f . 2 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
85, 6, 7sringcatALTV 44658 1 (𝑈𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ∩ cin 3907  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142  Catccat 16926   ↾cat cresc 17069  Ringcrg 19288  CRingccrg 19289   RingHom crh 19458  DivRingcdr 19493  Fieldcfield 19494  RingCatALTVcringcALTV 44567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-hom 16580  df-cco 16581  df-0g 16706  df-cat 16930  df-cid 16931  df-homf 16932  df-ssc 17071  df-resc 17072  df-subc 17073  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-ghm 18347  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-rnghom 19461  df-field 19496  df-ringcALTV 44569 This theorem is referenced by:  fldcALTV  44664
 Copyright terms: Public domain W3C validator