Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0psubclN Structured version   Visualization version   GIF version

Theorem 0psubclN 39879
Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
0psubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
0psubclN (𝐾 ∈ HL → ∅ ∈ 𝐶)

Proof of Theorem 0psubclN
StepHypRef Expression
1 0ss 4380 . . 3 ∅ ⊆ (Atoms‘𝐾)
21a1i 11 . 2 (𝐾 ∈ HL → ∅ ⊆ (Atoms‘𝐾))
3 eqid 2734 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
432pol0N 39847 . 2 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)) = ∅)
5 eqid 2734 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
6 0psubcl.c . . 3 𝐶 = (PSubCl‘𝐾)
75, 3, 6ispsubclN 39873 . 2 (𝐾 ∈ HL → (∅ ∈ 𝐶 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)) = ∅)))
82, 4, 7mpbir2and 713 1 (𝐾 ∈ HL → ∅ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wss 3931  c0 4313  cfv 6540  Atomscatm 39198  HLchlt 39285  𝑃cpolN 39838  PSubClcpscN 39870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-proset 18309  df-poset 18328  df-plt 18343  df-lub 18359  df-glb 18360  df-join 18361  df-meet 18362  df-p0 18438  df-p1 18439  df-lat 18445  df-clat 18512  df-oposet 39111  df-ol 39113  df-oml 39114  df-covers 39201  df-ats 39202  df-atl 39233  df-cvlat 39257  df-hlat 39286  df-pmap 39440  df-polarityN 39839  df-psubclN 39871
This theorem is referenced by:  pclfinclN  39886
  Copyright terms: Public domain W3C validator