![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubclN | Structured version Visualization version GIF version |
Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0psubcl.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
0psubclN | β’ (πΎ β HL β β β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4396 | . . 3 β’ β β (AtomsβπΎ) | |
2 | 1 | a1i 11 | . 2 β’ (πΎ β HL β β β (AtomsβπΎ)) |
3 | eqid 2732 | . . 3 β’ (β₯πβπΎ) = (β₯πβπΎ) | |
4 | 3 | 2pol0N 38777 | . 2 β’ (πΎ β HL β ((β₯πβπΎ)β((β₯πβπΎ)ββ )) = β ) |
5 | eqid 2732 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
6 | 0psubcl.c | . . 3 β’ πΆ = (PSubClβπΎ) | |
7 | 5, 3, 6 | ispsubclN 38803 | . 2 β’ (πΎ β HL β (β β πΆ β (β β (AtomsβπΎ) β§ ((β₯πβπΎ)β((β₯πβπΎ)ββ )) = β ))) |
8 | 2, 4, 7 | mpbir2and 711 | 1 β’ (πΎ β HL β β β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3948 β c0 4322 βcfv 6543 Atomscatm 38128 HLchlt 38215 β₯πcpolN 38768 PSubClcpscN 38800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-pmap 38370 df-polarityN 38769 df-psubclN 38801 |
This theorem is referenced by: pclfinclN 38816 |
Copyright terms: Public domain | W3C validator |