![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubclN | Structured version Visualization version GIF version |
Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0psubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
0psubclN | ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4409 | . . 3 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ HL → ∅ ⊆ (Atoms‘𝐾)) |
3 | eqid 2737 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
4 | 3 | 2pol0N 39908 | . 2 ⊢ (𝐾 ∈ HL → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅) |
5 | eqid 2737 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | 0psubcl.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 5, 3, 6 | ispsubclN 39934 | . 2 ⊢ (𝐾 ∈ HL → (∅ ∈ 𝐶 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅))) |
8 | 2, 4, 7 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ∅c0 4342 ‘cfv 6569 Atomscatm 39259 HLchlt 39346 ⊥𝑃cpolN 39899 PSubClcpscN 39931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-p0 18492 df-p1 18493 df-lat 18499 df-clat 18566 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-pmap 39501 df-polarityN 39900 df-psubclN 39932 |
This theorem is referenced by: pclfinclN 39947 |
Copyright terms: Public domain | W3C validator |