Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0psubclN Structured version   Visualization version   GIF version

Theorem 0psubclN 39940
Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
0psubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
0psubclN (𝐾 ∈ HL → ∅ ∈ 𝐶)

Proof of Theorem 0psubclN
StepHypRef Expression
1 0ss 4409 . . 3 ∅ ⊆ (Atoms‘𝐾)
21a1i 11 . 2 (𝐾 ∈ HL → ∅ ⊆ (Atoms‘𝐾))
3 eqid 2737 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
432pol0N 39908 . 2 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)) = ∅)
5 eqid 2737 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
6 0psubcl.c . . 3 𝐶 = (PSubCl‘𝐾)
75, 3, 6ispsubclN 39934 . 2 (𝐾 ∈ HL → (∅ ∈ 𝐶 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)) = ∅)))
82, 4, 7mpbir2and 713 1 (𝐾 ∈ HL → ∅ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3966  c0 4342  cfv 6569  Atomscatm 39259  HLchlt 39346  𝑃cpolN 39899  PSubClcpscN 39931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-p0 18492  df-p1 18493  df-lat 18499  df-clat 18566  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-pmap 39501  df-polarityN 39900  df-psubclN 39932
This theorem is referenced by:  pclfinclN  39947
  Copyright terms: Public domain W3C validator