| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubclN | Structured version Visualization version GIF version | ||
| Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0psubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| 0psubclN | ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ HL → ∅ ⊆ (Atoms‘𝐾)) |
| 3 | eqid 2734 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 4 | 3 | 2pol0N 39847 | . 2 ⊢ (𝐾 ∈ HL → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅) |
| 5 | eqid 2734 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | 0psubcl.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 7 | 5, 3, 6 | ispsubclN 39873 | . 2 ⊢ (𝐾 ∈ HL → (∅ ∈ 𝐶 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅))) |
| 8 | 2, 4, 7 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ∅c0 4313 ‘cfv 6540 Atomscatm 39198 HLchlt 39285 ⊥𝑃cpolN 39838 PSubClcpscN 39870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-proset 18309 df-poset 18328 df-plt 18343 df-lub 18359 df-glb 18360 df-join 18361 df-meet 18362 df-p0 18438 df-p1 18439 df-lat 18445 df-clat 18512 df-oposet 39111 df-ol 39113 df-oml 39114 df-covers 39201 df-ats 39202 df-atl 39233 df-cvlat 39257 df-hlat 39286 df-pmap 39440 df-polarityN 39839 df-psubclN 39871 |
| This theorem is referenced by: pclfinclN 39886 |
| Copyright terms: Public domain | W3C validator |