| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubclN | Structured version Visualization version GIF version | ||
| Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0psubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| 0psubclN | ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4371 | . . 3 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ HL → ∅ ⊆ (Atoms‘𝐾)) |
| 3 | eqid 2730 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 4 | 3 | 2pol0N 39897 | . 2 ⊢ (𝐾 ∈ HL → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅) |
| 5 | eqid 2730 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | 0psubcl.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 7 | 5, 3, 6 | ispsubclN 39923 | . 2 ⊢ (𝐾 ∈ HL → (∅ ∈ 𝐶 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅))) |
| 8 | 2, 4, 7 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ∅c0 4304 ‘cfv 6519 Atomscatm 39248 HLchlt 39335 ⊥𝑃cpolN 39888 PSubClcpscN 39920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 39161 df-ol 39163 df-oml 39164 df-covers 39251 df-ats 39252 df-atl 39283 df-cvlat 39307 df-hlat 39336 df-pmap 39490 df-polarityN 39889 df-psubclN 39921 |
| This theorem is referenced by: pclfinclN 39936 |
| Copyright terms: Public domain | W3C validator |