Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubclN Structured version   Visualization version   GIF version

Theorem atpsubclN 39329
Description: A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
1psubcl.a 𝐴 = (Atomsβ€˜πΎ)
1psubcl.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
atpsubclN ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ {𝑄} ∈ 𝐢)

Proof of Theorem atpsubclN
StepHypRef Expression
1 snssi 4806 . . 3 (𝑄 ∈ 𝐴 β†’ {𝑄} βŠ† 𝐴)
21adantl 481 . 2 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ {𝑄} βŠ† 𝐴)
3 1psubcl.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 eqid 2726 . . 3 (βŠ₯π‘ƒβ€˜πΎ) = (βŠ₯π‘ƒβ€˜πΎ)
53, 42polatN 39316 . 2 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑄})) = {𝑄})
6 1psubcl.c . . . 4 𝐢 = (PSubClβ€˜πΎ)
73, 4, 6ispsubclN 39321 . . 3 (𝐾 ∈ HL β†’ ({𝑄} ∈ 𝐢 ↔ ({𝑄} βŠ† 𝐴 ∧ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑄})) = {𝑄})))
87adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ ({𝑄} ∈ 𝐢 ↔ ({𝑄} βŠ† 𝐴 ∧ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑄})) = {𝑄})))
92, 5, 8mpbir2and 710 1 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ {𝑄} ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  {csn 4623  β€˜cfv 6537  Atomscatm 38646  HLchlt 38733  βŠ₯𝑃cpolN 39286  PSubClcpscN 39318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-pmap 38888  df-polarityN 39287  df-psubclN 39319
This theorem is referenced by:  pclfinclN  39334
  Copyright terms: Public domain W3C validator