Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atpsubclN | Structured version Visualization version GIF version |
Description: A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1psubcl.a | ⊢ 𝐴 = (Atoms‘𝐾) |
1psubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
atpsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4741 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ⊆ 𝐴) |
3 | 1psubcl.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
5 | 3, 4 | 2polatN 37954 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘{𝑄})) = {𝑄}) |
6 | 1psubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 3, 4, 6 | ispsubclN 37959 | . . 3 ⊢ (𝐾 ∈ HL → ({𝑄} ∈ 𝐶 ↔ ({𝑄} ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘{𝑄})) = {𝑄}))) |
8 | 7 | adantr 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ({𝑄} ∈ 𝐶 ↔ ({𝑄} ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘{𝑄})) = {𝑄}))) |
9 | 2, 5, 8 | mpbir2and 710 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3886 {csn 4561 ‘cfv 6426 Atomscatm 37285 HLchlt 37372 ⊥𝑃cpolN 37924 PSubClcpscN 37956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-riotaBAD 36975 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-undef 8076 df-proset 18023 df-poset 18041 df-plt 18058 df-lub 18074 df-glb 18075 df-join 18076 df-meet 18077 df-p0 18153 df-p1 18154 df-lat 18160 df-clat 18227 df-oposet 37198 df-ol 37200 df-oml 37201 df-covers 37288 df-ats 37289 df-atl 37320 df-cvlat 37344 df-hlat 37373 df-pmap 37526 df-polarityN 37925 df-psubclN 37957 |
This theorem is referenced by: pclfinclN 37972 |
Copyright terms: Public domain | W3C validator |