| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atpsubclN | Structured version Visualization version GIF version | ||
| Description: A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1psubcl.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 1psubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| atpsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4757 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ⊆ 𝐴) |
| 3 | 1psubcl.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 5 | 3, 4 | 2polatN 40041 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘{𝑄})) = {𝑄}) |
| 6 | 1psubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 7 | 3, 4, 6 | ispsubclN 40046 | . . 3 ⊢ (𝐾 ∈ HL → ({𝑄} ∈ 𝐶 ↔ ({𝑄} ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘{𝑄})) = {𝑄}))) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ({𝑄} ∈ 𝐶 ↔ ({𝑄} ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘{𝑄})) = {𝑄}))) |
| 9 | 2, 5, 8 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4573 ‘cfv 6481 Atomscatm 39372 HLchlt 39459 ⊥𝑃cpolN 40011 PSubClcpscN 40043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-pmap 39613 df-polarityN 40012 df-psubclN 40044 |
| This theorem is referenced by: pclfinclN 40059 |
| Copyright terms: Public domain | W3C validator |