| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapsubclN | Structured version Visualization version GIF version | ||
| Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmapsubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapsubcl.m | ⊢ 𝑀 = (pmap‘𝐾) |
| pmapsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| pmapsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | pmapsubcl.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | 1, 2, 3 | pmapssat 39753 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
| 5 | eqid 2729 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 6 | 1, 3, 5 | 2polpmapN 39907 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)) |
| 7 | pmapsubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 8 | 2, 5, 7 | ispsubclN 39931 | . . 3 ⊢ (𝐾 ∈ HL → ((𝑀‘𝑋) ∈ 𝐶 ↔ ((𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)))) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝐶 ↔ ((𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)))) |
| 10 | 4, 6, 9 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 Atomscatm 39256 HLchlt 39343 pmapcpmap 39491 ⊥𝑃cpolN 39896 PSubClcpscN 39928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-pmap 39498 df-polarityN 39897 df-psubclN 39929 |
| This theorem is referenced by: psubclinN 39942 paddatclN 39943 linepsubclN 39945 polsubclN 39946 pmapojoinN 39962 |
| Copyright terms: Public domain | W3C validator |