Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsubclN Structured version   Visualization version   GIF version

Theorem pmapsubclN 36016
 Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b 𝐵 = (Base‘𝐾)
pmapsubcl.m 𝑀 = (pmap‘𝐾)
pmapsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
pmapsubclN ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)

Proof of Theorem pmapsubclN
StepHypRef Expression
1 pmapsubcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2825 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 pmapsubcl.m . . 3 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 35829 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
5 eqid 2825 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
61, 3, 52polpmapN 35983 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))
7 pmapsubcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
82, 5, 7ispsubclN 36007 . . 3 (𝐾 ∈ HL → ((𝑀𝑋) ∈ 𝐶 ↔ ((𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))))
98adantr 474 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝐶 ↔ ((𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))))
104, 6, 9mpbir2and 704 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1656   ∈ wcel 2164   ⊆ wss 3798  ‘cfv 6127  Basecbs 16229  Atomscatm 35333  HLchlt 35420  pmapcpmap 35567  ⊥𝑃cpolN 35972  PSubClcpscN 36004 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-riotaBAD 35023 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-undef 7669  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-pmap 35574  df-polarityN 35973  df-psubclN 36005 This theorem is referenced by:  psubclinN  36018  paddatclN  36019  linepsubclN  36021  polsubclN  36022  pmapojoinN  36038
 Copyright terms: Public domain W3C validator