|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapsubclN | Structured version Visualization version GIF version | ||
| Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| pmapsubcl.b | ⊢ 𝐵 = (Base‘𝐾) | 
| pmapsubcl.m | ⊢ 𝑀 = (pmap‘𝐾) | 
| pmapsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) | 
| Ref | Expression | 
|---|---|
| pmapsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmapsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2737 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | pmapsubcl.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | 1, 2, 3 | pmapssat 39761 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) | 
| 5 | eqid 2737 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 6 | 1, 3, 5 | 2polpmapN 39915 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)) | 
| 7 | pmapsubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 8 | 2, 5, 7 | ispsubclN 39939 | . . 3 ⊢ (𝐾 ∈ HL → ((𝑀‘𝑋) ∈ 𝐶 ↔ ((𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)))) | 
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝐶 ↔ ((𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)))) | 
| 10 | 4, 6, 9 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ‘cfv 6561 Basecbs 17247 Atomscatm 39264 HLchlt 39351 pmapcpmap 39499 ⊥𝑃cpolN 39904 PSubClcpscN 39936 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-pmap 39506 df-polarityN 39905 df-psubclN 39937 | 
| This theorem is referenced by: psubclinN 39950 paddatclN 39951 linepsubclN 39953 polsubclN 39954 pmapojoinN 39970 | 
| Copyright terms: Public domain | W3C validator |