Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsubclN Structured version   Visualization version   GIF version

Theorem pmapsubclN 39903
Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b 𝐵 = (Base‘𝐾)
pmapsubcl.m 𝑀 = (pmap‘𝐾)
pmapsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
pmapsubclN ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)

Proof of Theorem pmapsubclN
StepHypRef Expression
1 pmapsubcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2740 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 pmapsubcl.m . . 3 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 39716 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
5 eqid 2740 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
61, 3, 52polpmapN 39870 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))
7 pmapsubcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
82, 5, 7ispsubclN 39894 . . 3 (𝐾 ∈ HL → ((𝑀𝑋) ∈ 𝐶 ↔ ((𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))))
98adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝐶 ↔ ((𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))))
104, 6, 9mpbir2and 712 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  cfv 6573  Basecbs 17258  Atomscatm 39219  HLchlt 39306  pmapcpmap 39454  𝑃cpolN 39859  PSubClcpscN 39891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-pmap 39461  df-polarityN 39860  df-psubclN 39892
This theorem is referenced by:  psubclinN  39905  paddatclN  39906  linepsubclN  39908  polsubclN  39909  pmapojoinN  39925
  Copyright terms: Public domain W3C validator