Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsubclN Structured version   Visualization version   GIF version

Theorem pmapsubclN 39913
Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b 𝐵 = (Base‘𝐾)
pmapsubcl.m 𝑀 = (pmap‘𝐾)
pmapsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
pmapsubclN ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)

Proof of Theorem pmapsubclN
StepHypRef Expression
1 pmapsubcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 pmapsubcl.m . . 3 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 39726 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
5 eqid 2729 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
61, 3, 52polpmapN 39880 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))
7 pmapsubcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
82, 5, 7ispsubclN 39904 . . 3 (𝐾 ∈ HL → ((𝑀𝑋) ∈ 𝐶 ↔ ((𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))))
98adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝐶 ↔ ((𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑋))) = (𝑀𝑋))))
104, 6, 9mpbir2and 713 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  cfv 6499  Basecbs 17155  Atomscatm 39229  HLchlt 39316  pmapcpmap 39464  𝑃cpolN 39869  PSubClcpscN 39901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-pmap 39471  df-polarityN 39870  df-psubclN 39902
This theorem is referenced by:  psubclinN  39915  paddatclN  39916  linepsubclN  39918  polsubclN  39919  pmapojoinN  39935
  Copyright terms: Public domain W3C validator