Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapsubclN | Structured version Visualization version GIF version |
Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapsubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapsubcl.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
pmapsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | pmapsubcl.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
4 | 1, 2, 3 | pmapssat 37752 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
5 | eqid 2739 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
6 | 1, 3, 5 | 2polpmapN 37906 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)) |
7 | pmapsubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
8 | 2, 5, 7 | ispsubclN 37930 | . . 3 ⊢ (𝐾 ∈ HL → ((𝑀‘𝑋) ∈ 𝐶 ↔ ((𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)))) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝐶 ↔ ((𝑀‘𝑋) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘𝑋))) = (𝑀‘𝑋)))) |
10 | 4, 6, 9 | mpbir2and 709 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ‘cfv 6430 Basecbs 16893 Atomscatm 37256 HLchlt 37343 pmapcpmap 37490 ⊥𝑃cpolN 37895 PSubClcpscN 37927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-riotaBAD 36946 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-undef 8073 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-pmap 37497 df-polarityN 37896 df-psubclN 37928 |
This theorem is referenced by: psubclinN 37941 paddatclN 37942 linepsubclN 37944 polsubclN 37945 pmapojoinN 37961 |
Copyright terms: Public domain | W3C validator |