![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapsubclN | Structured version Visualization version GIF version |
Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapsubcl.b | β’ π΅ = (BaseβπΎ) |
pmapsubcl.m | β’ π = (pmapβπΎ) |
pmapsubcl.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
pmapsubclN | β’ ((πΎ β HL β§ π β π΅) β (πβπ) β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapsubcl.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2733 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
3 | pmapsubcl.m | . . 3 β’ π = (pmapβπΎ) | |
4 | 1, 2, 3 | pmapssat 38630 | . 2 β’ ((πΎ β HL β§ π β π΅) β (πβπ) β (AtomsβπΎ)) |
5 | eqid 2733 | . . 3 β’ (β₯πβπΎ) = (β₯πβπΎ) | |
6 | 1, 3, 5 | 2polpmapN 38784 | . 2 β’ ((πΎ β HL β§ π β π΅) β ((β₯πβπΎ)β((β₯πβπΎ)β(πβπ))) = (πβπ)) |
7 | pmapsubcl.c | . . . 4 β’ πΆ = (PSubClβπΎ) | |
8 | 2, 5, 7 | ispsubclN 38808 | . . 3 β’ (πΎ β HL β ((πβπ) β πΆ β ((πβπ) β (AtomsβπΎ) β§ ((β₯πβπΎ)β((β₯πβπΎ)β(πβπ))) = (πβπ)))) |
9 | 8 | adantr 482 | . 2 β’ ((πΎ β HL β§ π β π΅) β ((πβπ) β πΆ β ((πβπ) β (AtomsβπΎ) β§ ((β₯πβπΎ)β((β₯πβπΎ)β(πβπ))) = (πβπ)))) |
10 | 4, 6, 9 | mpbir2and 712 | 1 β’ ((πΎ β HL β§ π β π΅) β (πβπ) β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3949 βcfv 6544 Basecbs 17144 Atomscatm 38133 HLchlt 38220 pmapcpmap 38368 β₯πcpolN 38773 PSubClcpscN 38805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-pmap 38375 df-polarityN 38774 df-psubclN 38806 |
This theorem is referenced by: psubclinN 38819 paddatclN 38820 linepsubclN 38822 polsubclN 38823 pmapojoinN 38839 |
Copyright terms: Public domain | W3C validator |