Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1psubclN Structured version   Visualization version   GIF version

Theorem 1psubclN 39933
Description: The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
1psubcl.a 𝐴 = (Atoms‘𝐾)
1psubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
1psubclN (𝐾 ∈ HL → 𝐴𝐶)

Proof of Theorem 1psubclN
StepHypRef Expression
1 ssidd 3959 . 2 (𝐾 ∈ HL → 𝐴𝐴)
2 1psubcl.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 eqid 2729 . . . . 5 (⊥𝑃𝐾) = (⊥𝑃𝐾)
42, 3pol1N 39899 . . . 4 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘𝐴) = ∅)
54fveq2d 6826 . . 3 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝐴)) = ((⊥𝑃𝐾)‘∅))
62, 3pol0N 39898 . . 3 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘∅) = 𝐴)
75, 6eqtrd 2764 . 2 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝐴)) = 𝐴)
8 1psubcl.c . . 3 𝐶 = (PSubCl‘𝐾)
92, 3, 8ispsubclN 39926 . 2 (𝐾 ∈ HL → (𝐴𝐶 ↔ (𝐴𝐴 ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝐴)) = 𝐴)))
101, 7, 9mpbir2and 713 1 (𝐾 ∈ HL → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903  c0 4284  cfv 6482  Atomscatm 39252  HLchlt 39339  𝑃cpolN 39891  PSubClcpscN 39923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-pmap 39493  df-polarityN 39892  df-psubclN 39924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator