![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1psubclN | Structured version Visualization version GIF version |
Description: The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1psubcl.a | β’ π΄ = (AtomsβπΎ) |
1psubcl.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
1psubclN | β’ (πΎ β HL β π΄ β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4000 | . 2 β’ (πΎ β HL β π΄ β π΄) | |
2 | 1psubcl.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
3 | eqid 2726 | . . . . 5 β’ (β₯πβπΎ) = (β₯πβπΎ) | |
4 | 2, 3 | pol1N 39294 | . . . 4 β’ (πΎ β HL β ((β₯πβπΎ)βπ΄) = β ) |
5 | 4 | fveq2d 6889 | . . 3 β’ (πΎ β HL β ((β₯πβπΎ)β((β₯πβπΎ)βπ΄)) = ((β₯πβπΎ)ββ )) |
6 | 2, 3 | pol0N 39293 | . . 3 β’ (πΎ β HL β ((β₯πβπΎ)ββ ) = π΄) |
7 | 5, 6 | eqtrd 2766 | . 2 β’ (πΎ β HL β ((β₯πβπΎ)β((β₯πβπΎ)βπ΄)) = π΄) |
8 | 1psubcl.c | . . 3 β’ πΆ = (PSubClβπΎ) | |
9 | 2, 3, 8 | ispsubclN 39321 | . 2 β’ (πΎ β HL β (π΄ β πΆ β (π΄ β π΄ β§ ((β₯πβπΎ)β((β₯πβπΎ)βπ΄)) = π΄))) |
10 | 1, 7, 9 | mpbir2and 710 | 1 β’ (πΎ β HL β π΄ β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3943 β c0 4317 βcfv 6537 Atomscatm 38646 HLchlt 38733 β₯πcpolN 39286 PSubClcpscN 39318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 df-pmap 38888 df-polarityN 39287 df-psubclN 39319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |