Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubcl2N Structured version   Visualization version   GIF version

Theorem ispsubcl2N 39992
Description: Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b 𝐵 = (Base‘𝐾)
pmapsubcl.m 𝑀 = (pmap‘𝐾)
pmapsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
ispsubcl2N (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐾   𝑦,𝑀   𝑦,𝑋
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ispsubcl2N
StepHypRef Expression
1 eqid 2731 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 eqid 2731 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
3 pmapsubcl.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 39982 . 2 (𝐾 ∈ HL → (𝑋𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
5 hlop 39407 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
65adantr 480 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝐾 ∈ OP)
7 hlclat 39403 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ CLat)
87adantr 480 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
91, 2polssatN 39953 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
10 pmapsubcl.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
1110, 1atssbase 39335 . . . . . . . . . 10 (Atoms‘𝐾) ⊆ 𝐵
129, 11sstrdi 3947 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ⊆ 𝐵)
13 eqid 2731 . . . . . . . . . 10 (lub‘𝐾) = (lub‘𝐾)
1410, 13clatlubcl 18409 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ 𝐵) → ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵)
158, 12, 14syl2anc 584 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵)
16 eqid 2731 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
1710, 16opoccl 39239 . . . . . . . 8 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵)
186, 15, 17syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵)
1918ex 412 . . . . . 6 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵))
2019adantrd 491 . . . . 5 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵))
21 pmapsubcl.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
2213, 16, 1, 21, 2polval2N 39951 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
239, 22syldan 591 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
2423ex 412 . . . . . . 7 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
25 eqeq1 2735 . . . . . . . 8 (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋 → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))) ↔ 𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2625biimpcd 249 . . . . . . 7 (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2724, 26syl6 35 . . . . . 6 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))))
2827impd 410 . . . . 5 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → 𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2920, 28jcad 512 . . . 4 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → (((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))))
30 fveq2 6822 . . . . 5 (𝑦 = ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) → (𝑀𝑦) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
3130rspceeqv 3600 . . . 4 ((((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))) → ∃𝑦𝐵 𝑋 = (𝑀𝑦))
3229, 31syl6 35 . . 3 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
3310, 1, 21pmapssat 39804 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (𝑀𝑦) ⊆ (Atoms‘𝐾))
3410, 21, 22polpmapN 39958 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦))
35 sseq1 3960 . . . . . . 7 (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ↔ (𝑀𝑦) ⊆ (Atoms‘𝐾)))
36 2fveq3 6827 . . . . . . . 8 (𝑋 = (𝑀𝑦) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))))
37 id 22 . . . . . . . 8 (𝑋 = (𝑀𝑦) → 𝑋 = (𝑀𝑦))
3836, 37eqeq12d 2747 . . . . . . 7 (𝑋 = (𝑀𝑦) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋 ↔ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦)))
3935, 38anbi12d 632 . . . . . 6 (𝑋 = (𝑀𝑦) → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) ↔ ((𝑀𝑦) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦))))
4039biimprcd 250 . . . . 5 (((𝑀𝑦) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦)) → (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4133, 34, 40syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4241rexlimdva 3133 . . 3 (𝐾 ∈ HL → (∃𝑦𝐵 𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4332, 42impbid 212 . 2 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
444, 43bitrd 279 1 (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3902  cfv 6481  Basecbs 17120  occoc 17169  lubclub 18215  CLatccla 18404  OPcops 39217  Atomscatm 39308  HLchlt 39395  pmapcpmap 39542  𝑃cpolN 39947  PSubClcpscN 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-psubsp 39548  df-pmap 39549  df-polarityN 39948  df-psubclN 39980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator