Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubcl2N Structured version   Visualization version   GIF version

Theorem ispsubcl2N 39914
Description: Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b 𝐵 = (Base‘𝐾)
pmapsubcl.m 𝑀 = (pmap‘𝐾)
pmapsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
ispsubcl2N (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐾   𝑦,𝑀   𝑦,𝑋
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ispsubcl2N
StepHypRef Expression
1 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 eqid 2729 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
3 pmapsubcl.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 39904 . 2 (𝐾 ∈ HL → (𝑋𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
5 hlop 39328 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
65adantr 480 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝐾 ∈ OP)
7 hlclat 39324 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ CLat)
87adantr 480 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
91, 2polssatN 39875 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
10 pmapsubcl.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
1110, 1atssbase 39256 . . . . . . . . . 10 (Atoms‘𝐾) ⊆ 𝐵
129, 11sstrdi 3956 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ⊆ 𝐵)
13 eqid 2729 . . . . . . . . . 10 (lub‘𝐾) = (lub‘𝐾)
1410, 13clatlubcl 18438 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ 𝐵) → ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵)
158, 12, 14syl2anc 584 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵)
16 eqid 2729 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
1710, 16opoccl 39160 . . . . . . . 8 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝐵) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵)
186, 15, 17syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵)
1918ex 412 . . . . . 6 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵))
2019adantrd 491 . . . . 5 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵))
21 pmapsubcl.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
2213, 16, 1, 21, 2polval2N 39873 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
239, 22syldan 591 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
2423ex 412 . . . . . . 7 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
25 eqeq1 2733 . . . . . . . 8 (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋 → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))) ↔ 𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2625biimpcd 249 . . . . . . 7 (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2724, 26syl6 35 . . . . . 6 (𝐾 ∈ HL → (𝑋 ⊆ (Atoms‘𝐾) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))))
2827impd 410 . . . . 5 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → 𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))))
2920, 28jcad 512 . . . 4 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → (((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))))
30 fveq2 6840 . . . . 5 (𝑦 = ((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) → (𝑀𝑦) = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋)))))
3130rspceeqv 3608 . . . 4 ((((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))) ∈ 𝐵𝑋 = (𝑀‘((oc‘𝐾)‘((lub‘𝐾)‘((⊥𝑃𝐾)‘𝑋))))) → ∃𝑦𝐵 𝑋 = (𝑀𝑦))
3229, 31syl6 35 . . 3 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) → ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
3310, 1, 21pmapssat 39726 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (𝑀𝑦) ⊆ (Atoms‘𝐾))
3410, 21, 22polpmapN 39880 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦))
35 sseq1 3969 . . . . . . 7 (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ↔ (𝑀𝑦) ⊆ (Atoms‘𝐾)))
36 2fveq3 6845 . . . . . . . 8 (𝑋 = (𝑀𝑦) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))))
37 id 22 . . . . . . . 8 (𝑋 = (𝑀𝑦) → 𝑋 = (𝑀𝑦))
3836, 37eqeq12d 2745 . . . . . . 7 (𝑋 = (𝑀𝑦) → (((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋 ↔ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦)))
3935, 38anbi12d 632 . . . . . 6 (𝑋 = (𝑀𝑦) → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) ↔ ((𝑀𝑦) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦))))
4039biimprcd 250 . . . . 5 (((𝑀𝑦) ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀𝑦))) = (𝑀𝑦)) → (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4133, 34, 40syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑦𝐵) → (𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4241rexlimdva 3134 . . 3 (𝐾 ∈ HL → (∃𝑦𝐵 𝑋 = (𝑀𝑦) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)))
4332, 42impbid 212 . 2 (𝐾 ∈ HL → ((𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋) ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
444, 43bitrd 279 1 (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911  cfv 6499  Basecbs 17155  occoc 17204  lubclub 18246  CLatccla 18433  OPcops 39138  Atomscatm 39229  HLchlt 39316  pmapcpmap 39464  𝑃cpolN 39869  PSubClcpscN 39901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-psubsp 39470  df-pmap 39471  df-polarityN 39870  df-psubclN 39902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator