|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenss | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 46359, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) | 
| Ref | Expression | 
|---|---|
| salgenss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| salgenss.g | ⊢ 𝐺 = (SalGen‘𝑋) | 
| salgenss.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| salgenss.i | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | 
| salgenss.u | ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) | 
| Ref | Expression | 
|---|---|
| salgenss | ⊢ (𝜑 → 𝐺 ⊆ 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | salgenss.g | . . . 4 ⊢ 𝐺 = (SalGen‘𝑋) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (SalGen‘𝑋)) | 
| 3 | salgenss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | salgenval 46336 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | 
| 6 | 2, 5 | eqtrd 2777 | . 2 ⊢ (𝜑 → 𝐺 = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | 
| 7 | salgenss.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 8 | salgenss.u | . . . . . 6 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) | |
| 9 | salgenss.i | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 10 | 8, 9 | jca 511 | . . . . 5 ⊢ (𝜑 → (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆)) | 
| 11 | 7, 10 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ SAlg ∧ (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆))) | 
| 12 | unieq 4918 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
| 13 | 12 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑆 = ∪ 𝑋)) | 
| 14 | sseq2 4010 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑆)) | |
| 15 | 13, 14 | anbi12d 632 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆))) | 
| 16 | 15 | elrab 3692 | . . . 4 ⊢ (𝑆 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑆 ∈ SAlg ∧ (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆))) | 
| 17 | 11, 16 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝑆 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | 
| 18 | intss1 4963 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ 𝑆) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ 𝑆) | 
| 20 | 6, 19 | eqsstrd 4018 | 1 ⊢ (𝜑 → 𝐺 ⊆ 𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 ⊆ wss 3951 ∪ cuni 4907 ∩ cint 4946 ‘cfv 6561 SAlgcsalg 46323 SalGencsalgen 46327 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-salg 46324 df-salgen 46328 | 
| This theorem is referenced by: issalgend 46353 dfsalgen2 46356 borelmbl 46651 smfpimbor1lem2 46814 | 
| Copyright terms: Public domain | W3C validator |