Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenss Structured version   Visualization version   GIF version

Theorem salgenss 46334
Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 46342, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgenss.x (𝜑𝑋𝑉)
salgenss.g 𝐺 = (SalGen‘𝑋)
salgenss.s (𝜑𝑆 ∈ SAlg)
salgenss.i (𝜑𝑋𝑆)
salgenss.u (𝜑 𝑆 = 𝑋)
Assertion
Ref Expression
salgenss (𝜑𝐺𝑆)

Proof of Theorem salgenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 salgenss.g . . . 4 𝐺 = (SalGen‘𝑋)
21a1i 11 . . 3 (𝜑𝐺 = (SalGen‘𝑋))
3 salgenss.x . . . 4 (𝜑𝑋𝑉)
4 salgenval 46319 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
53, 4syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
62, 5eqtrd 2764 . 2 (𝜑𝐺 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
7 salgenss.s . . . . 5 (𝜑𝑆 ∈ SAlg)
8 salgenss.u . . . . . 6 (𝜑 𝑆 = 𝑋)
9 salgenss.i . . . . . 6 (𝜑𝑋𝑆)
108, 9jca 511 . . . . 5 (𝜑 → ( 𝑆 = 𝑋𝑋𝑆))
117, 10jca 511 . . . 4 (𝜑 → (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
12 unieq 4882 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
1312eqeq1d 2731 . . . . . 6 (𝑠 = 𝑆 → ( 𝑠 = 𝑋 𝑆 = 𝑋))
14 sseq2 3973 . . . . . 6 (𝑠 = 𝑆 → (𝑋𝑠𝑋𝑆))
1513, 14anbi12d 632 . . . . 5 (𝑠 = 𝑆 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑆 = 𝑋𝑋𝑆)))
1615elrab 3659 . . . 4 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
1711, 16sylibr 234 . . 3 (𝜑𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
18 intss1 4927 . . 3 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
1917, 18syl 17 . 2 (𝜑 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
206, 19eqsstrd 3981 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914   cuni 4871   cint 4910  cfv 6511  SAlgcsalg 46306  SalGencsalgen 46310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-salg 46307  df-salgen 46311
This theorem is referenced by:  issalgend  46336  dfsalgen2  46339  borelmbl  46634  smfpimbor1lem2  46797
  Copyright terms: Public domain W3C validator