Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenss | Structured version Visualization version GIF version |
Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 43773, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgenss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
salgenss.g | ⊢ 𝐺 = (SalGen‘𝑋) |
salgenss.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salgenss.i | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
salgenss.u | ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) |
Ref | Expression |
---|---|
salgenss | ⊢ (𝜑 → 𝐺 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salgenss.g | . . . 4 ⊢ 𝐺 = (SalGen‘𝑋) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 = (SalGen‘𝑋)) |
3 | salgenss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | salgenval 43752 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
6 | 2, 5 | eqtrd 2778 | . 2 ⊢ (𝜑 → 𝐺 = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
7 | salgenss.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
8 | salgenss.u | . . . . . 6 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) | |
9 | salgenss.i | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
10 | 8, 9 | jca 511 | . . . . 5 ⊢ (𝜑 → (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆)) |
11 | 7, 10 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ SAlg ∧ (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆))) |
12 | unieq 4847 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
13 | 12 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑆 = ∪ 𝑋)) |
14 | sseq2 3943 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑆)) | |
15 | 13, 14 | anbi12d 630 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆))) |
16 | 15 | elrab 3617 | . . . 4 ⊢ (𝑆 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑆 ∈ SAlg ∧ (∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆))) |
17 | 11, 16 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝑆 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
18 | intss1 4891 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ 𝑆) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ⊆ 𝑆) |
20 | 6, 19 | eqsstrd 3955 | 1 ⊢ (𝜑 → 𝐺 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∪ cuni 4836 ∩ cint 4876 ‘cfv 6418 SAlgcsalg 43739 SalGencsalgen 43743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-salg 43740 df-salgen 43744 |
This theorem is referenced by: issalgend 43767 dfsalgen2 43770 borelmbl 44064 smfpimbor1lem2 44220 |
Copyright terms: Public domain | W3C validator |