Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenss Structured version   Visualization version   GIF version

Theorem salgenss 43765
Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 43773, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgenss.x (𝜑𝑋𝑉)
salgenss.g 𝐺 = (SalGen‘𝑋)
salgenss.s (𝜑𝑆 ∈ SAlg)
salgenss.i (𝜑𝑋𝑆)
salgenss.u (𝜑 𝑆 = 𝑋)
Assertion
Ref Expression
salgenss (𝜑𝐺𝑆)

Proof of Theorem salgenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 salgenss.g . . . 4 𝐺 = (SalGen‘𝑋)
21a1i 11 . . 3 (𝜑𝐺 = (SalGen‘𝑋))
3 salgenss.x . . . 4 (𝜑𝑋𝑉)
4 salgenval 43752 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
53, 4syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
62, 5eqtrd 2778 . 2 (𝜑𝐺 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
7 salgenss.s . . . . 5 (𝜑𝑆 ∈ SAlg)
8 salgenss.u . . . . . 6 (𝜑 𝑆 = 𝑋)
9 salgenss.i . . . . . 6 (𝜑𝑋𝑆)
108, 9jca 511 . . . . 5 (𝜑 → ( 𝑆 = 𝑋𝑋𝑆))
117, 10jca 511 . . . 4 (𝜑 → (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
12 unieq 4847 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
1312eqeq1d 2740 . . . . . 6 (𝑠 = 𝑆 → ( 𝑠 = 𝑋 𝑆 = 𝑋))
14 sseq2 3943 . . . . . 6 (𝑠 = 𝑆 → (𝑋𝑠𝑋𝑆))
1513, 14anbi12d 630 . . . . 5 (𝑠 = 𝑆 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑆 = 𝑋𝑋𝑆)))
1615elrab 3617 . . . 4 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
1711, 16sylibr 233 . . 3 (𝜑𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
18 intss1 4891 . . 3 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
1917, 18syl 17 . 2 (𝜑 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
206, 19eqsstrd 3955 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883   cuni 4836   cint 4876  cfv 6418  SAlgcsalg 43739  SalGencsalgen 43743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-salg 43740  df-salgen 43744
This theorem is referenced by:  issalgend  43767  dfsalgen2  43770  borelmbl  44064  smfpimbor1lem2  44220
  Copyright terms: Public domain W3C validator