Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgredgss Structured version   Visualization version   GIF version

Theorem isubgredgss 47858
Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgredg.v 𝑉 = (Vtx‘𝐺)
isubgredg.e 𝐸 = (Edg‘𝐺)
isubgredg.h 𝐻 = (𝐺 ISubGr 𝑆)
isubgredg.i 𝐼 = (Edg‘𝐻)
Assertion
Ref Expression
isubgredgss ((𝐺𝑊𝑆𝑉) → 𝐼𝐸)

Proof of Theorem isubgredgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgredg.h . . . . . 6 𝐻 = (𝐺 ISubGr 𝑆)
21fveq2i 6843 . . . . 5 (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆))
3 isubgredg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
4 eqid 2729 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4isubgriedg 47856 . . . . 5 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
62, 5eqtrid 2776 . . . 4 ((𝐺𝑊𝑆𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
76rneqd 5891 . . 3 ((𝐺𝑊𝑆𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
8 resss 5961 . . . 4 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺)
9 rnss 5892 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺))
108, 9mp1i 13 . . 3 ((𝐺𝑊𝑆𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺))
117, 10eqsstrd 3978 . 2 ((𝐺𝑊𝑆𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺))
12 isubgredg.i . . 3 𝐼 = (Edg‘𝐻)
13 edgval 29029 . . 3 (Edg‘𝐻) = ran (iEdg‘𝐻)
1412, 13eqtri 2752 . 2 𝐼 = ran (iEdg‘𝐻)
15 isubgredg.e . . 3 𝐸 = (Edg‘𝐺)
16 edgval 29029 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
1715, 16eqtri 2752 . 2 𝐸 = ran (iEdg‘𝐺)
1811, 14, 173sstr4g 3997 1 ((𝐺𝑊𝑆𝑉) → 𝐼𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  wss 3911  dom cdm 5631  ran crn 5632  cres 5633  cfv 6499  (class class class)co 7369  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027   ISubGr cisubgr 47853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-iedg 28979  df-edg 29028  df-isubgr 47854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator