| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgredgss | Structured version Visualization version GIF version | ||
| Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgredg.h | ⊢ 𝐻 = (𝐺 ISubGr 𝑆) |
| isubgredg.i | ⊢ 𝐼 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| isubgredgss | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ISubGr 𝑆) | |
| 2 | 1 | fveq2i 6878 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆)) |
| 3 | isubgredg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | eqid 2735 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 3, 4 | isubgriedg 47824 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 6 | 2, 5 | eqtrid 2782 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | 6 | rneqd 5918 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 8 | resss 5988 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 9 | rnss 5919 | . . . 4 ⊢ (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) | |
| 10 | 8, 9 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) |
| 11 | 7, 10 | eqsstrd 3993 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺)) |
| 12 | isubgredg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐻) | |
| 13 | edgval 28974 | . . 3 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
| 14 | 12, 13 | eqtri 2758 | . 2 ⊢ 𝐼 = ran (iEdg‘𝐻) |
| 15 | isubgredg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 16 | edgval 28974 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 17 | 15, 16 | eqtri 2758 | . 2 ⊢ 𝐸 = ran (iEdg‘𝐺) |
| 18 | 11, 14, 17 | 3sstr4g 4012 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 dom cdm 5654 ran crn 5655 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 Vtxcvtx 28921 iEdgciedg 28922 Edgcedg 28972 ISubGr cisubgr 47821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-2nd 7987 df-iedg 28924 df-edg 28973 df-isubgr 47822 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |