Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgredgss Structured version   Visualization version   GIF version

Theorem isubgredgss 47859
Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgredg.v 𝑉 = (Vtx‘𝐺)
isubgredg.e 𝐸 = (Edg‘𝐺)
isubgredg.h 𝐻 = (𝐺 ISubGr 𝑆)
isubgredg.i 𝐼 = (Edg‘𝐻)
Assertion
Ref Expression
isubgredgss ((𝐺𝑊𝑆𝑉) → 𝐼𝐸)

Proof of Theorem isubgredgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgredg.h . . . . . 6 𝐻 = (𝐺 ISubGr 𝑆)
21fveq2i 6825 . . . . 5 (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆))
3 isubgredg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
4 eqid 2729 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4isubgriedg 47857 . . . . 5 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
62, 5eqtrid 2776 . . . 4 ((𝐺𝑊𝑆𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
76rneqd 5880 . . 3 ((𝐺𝑊𝑆𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
8 resss 5952 . . . 4 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺)
9 rnss 5881 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺))
108, 9mp1i 13 . . 3 ((𝐺𝑊𝑆𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺))
117, 10eqsstrd 3970 . 2 ((𝐺𝑊𝑆𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺))
12 isubgredg.i . . 3 𝐼 = (Edg‘𝐻)
13 edgval 28994 . . 3 (Edg‘𝐻) = ran (iEdg‘𝐻)
1412, 13eqtri 2752 . 2 𝐼 = ran (iEdg‘𝐻)
15 isubgredg.e . . 3 𝐸 = (Edg‘𝐺)
16 edgval 28994 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
1715, 16eqtri 2752 . 2 𝐸 = ran (iEdg‘𝐺)
1811, 14, 173sstr4g 3989 1 ((𝐺𝑊𝑆𝑉) → 𝐼𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  wss 3903  dom cdm 5619  ran crn 5620  cres 5621  cfv 6482  (class class class)co 7349  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992   ISubGr cisubgr 47854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-iedg 28944  df-edg 28993  df-isubgr 47855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator