| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgredgss | Structured version Visualization version GIF version | ||
| Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgredg.h | ⊢ 𝐻 = (𝐺 ISubGr 𝑆) |
| isubgredg.i | ⊢ 𝐼 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| isubgredgss | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ISubGr 𝑆) | |
| 2 | 1 | fveq2i 6864 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆)) |
| 3 | isubgredg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 3, 4 | isubgriedg 47867 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 6 | 2, 5 | eqtrid 2777 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | 6 | rneqd 5905 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 8 | resss 5975 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 9 | rnss 5906 | . . . 4 ⊢ (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) | |
| 10 | 8, 9 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) |
| 11 | 7, 10 | eqsstrd 3984 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺)) |
| 12 | isubgredg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐻) | |
| 13 | edgval 28983 | . . 3 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
| 14 | 12, 13 | eqtri 2753 | . 2 ⊢ 𝐼 = ran (iEdg‘𝐻) |
| 15 | isubgredg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 16 | edgval 28983 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 17 | 15, 16 | eqtri 2753 | . 2 ⊢ 𝐸 = ran (iEdg‘𝐺) |
| 18 | 11, 14, 17 | 3sstr4g 4003 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 dom cdm 5641 ran crn 5642 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 iEdgciedg 28931 Edgcedg 28981 ISubGr cisubgr 47864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-iedg 28933 df-edg 28982 df-isubgr 47865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |