Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgredgss Structured version   Visualization version   GIF version

Theorem isubgredgss 47824
Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgredg.v 𝑉 = (Vtx‘𝐺)
isubgredg.e 𝐸 = (Edg‘𝐺)
isubgredg.h 𝐻 = (𝐺 ISubGr 𝑆)
isubgredg.i 𝐼 = (Edg‘𝐻)
Assertion
Ref Expression
isubgredgss ((𝐺𝑊𝑆𝑉) → 𝐼𝐸)

Proof of Theorem isubgredgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgredg.h . . . . . 6 𝐻 = (𝐺 ISubGr 𝑆)
21fveq2i 6889 . . . . 5 (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆))
3 isubgredg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
4 eqid 2734 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4isubgriedg 47822 . . . . 5 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
62, 5eqtrid 2781 . . . 4 ((𝐺𝑊𝑆𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
76rneqd 5929 . . 3 ((𝐺𝑊𝑆𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
8 resss 5999 . . . 4 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺)
9 rnss 5930 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺))
108, 9mp1i 13 . . 3 ((𝐺𝑊𝑆𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺))
117, 10eqsstrd 3998 . 2 ((𝐺𝑊𝑆𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺))
12 isubgredg.i . . 3 𝐼 = (Edg‘𝐻)
13 edgval 28995 . . 3 (Edg‘𝐻) = ran (iEdg‘𝐻)
1412, 13eqtri 2757 . 2 𝐼 = ran (iEdg‘𝐻)
15 isubgredg.e . . 3 𝐸 = (Edg‘𝐺)
16 edgval 28995 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
1715, 16eqtri 2757 . 2 𝐸 = ran (iEdg‘𝐺)
1811, 14, 173sstr4g 4017 1 ((𝐺𝑊𝑆𝑉) → 𝐼𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3419  wss 3931  dom cdm 5665  ran crn 5666  cres 5667  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  iEdgciedg 28943  Edgcedg 28993   ISubGr cisubgr 47819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-2nd 7997  df-iedg 28945  df-edg 28994  df-isubgr 47820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator