| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgredgss | Structured version Visualization version GIF version | ||
| Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgredg.h | ⊢ 𝐻 = (𝐺 ISubGr 𝑆) |
| isubgredg.i | ⊢ 𝐼 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| isubgredgss | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ISubGr 𝑆) | |
| 2 | 1 | fveq2i 6825 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆)) |
| 3 | isubgredg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 3, 4 | isubgriedg 47857 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 6 | 2, 5 | eqtrid 2776 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | 6 | rneqd 5880 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 8 | resss 5952 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 9 | rnss 5881 | . . . 4 ⊢ (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) | |
| 10 | 8, 9 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) |
| 11 | 7, 10 | eqsstrd 3970 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺)) |
| 12 | isubgredg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐻) | |
| 13 | edgval 28994 | . . 3 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
| 14 | 12, 13 | eqtri 2752 | . 2 ⊢ 𝐼 = ran (iEdg‘𝐻) |
| 15 | isubgredg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 16 | edgval 28994 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 17 | 15, 16 | eqtri 2752 | . 2 ⊢ 𝐸 = ran (iEdg‘𝐺) |
| 18 | 11, 14, 17 | 3sstr4g 3989 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 dom cdm 5619 ran crn 5620 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 Vtxcvtx 28941 iEdgciedg 28942 Edgcedg 28992 ISubGr cisubgr 47854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-iedg 28944 df-edg 28993 df-isubgr 47855 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |