| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgredgss | Structured version Visualization version GIF version | ||
| Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgredg.h | ⊢ 𝐻 = (𝐺 ISubGr 𝑆) |
| isubgredg.i | ⊢ 𝐼 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| isubgredgss | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ISubGr 𝑆) | |
| 2 | 1 | fveq2i 6825 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆)) |
| 3 | isubgredg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 3, 4 | isubgriedg 47962 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 6 | 2, 5 | eqtrid 2778 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | 6 | rneqd 5877 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 8 | resss 5949 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 9 | rnss 5878 | . . . 4 ⊢ (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) | |
| 10 | 8, 9 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ ran (iEdg‘𝐺)) |
| 11 | 7, 10 | eqsstrd 3964 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) ⊆ ran (iEdg‘𝐺)) |
| 12 | isubgredg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐻) | |
| 13 | edgval 29027 | . . 3 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
| 14 | 12, 13 | eqtri 2754 | . 2 ⊢ 𝐼 = ran (iEdg‘𝐻) |
| 15 | isubgredg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 16 | edgval 29027 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 17 | 15, 16 | eqtri 2754 | . 2 ⊢ 𝐸 = ran (iEdg‘𝐺) |
| 18 | 11, 14, 17 | 3sstr4g 3983 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 dom cdm 5614 ran crn 5615 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 iEdgciedg 28975 Edgcedg 29025 ISubGr cisubgr 47959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-iedg 28977 df-edg 29026 df-isubgr 47960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |