Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrvtxuhgr Structured version   Visualization version   GIF version

Theorem isubgrvtxuhgr 48026
Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isubgriedg.v 𝑉 = (Vtx‘𝐺)
isubgriedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isubgrvtxuhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)

Proof of Theorem isubgrvtxuhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3954 . . 3 (𝐺 ∈ UHGraph → 𝑉𝑉)
2 isubgriedg.v . . . 4 𝑉 = (Vtx‘𝐺)
3 isubgriedg.e . . . 4 𝐸 = (iEdg‘𝐺)
42, 3isisubgr 48024 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑉) → (𝐺 ISubGr 𝑉) = ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩)
51, 4mpdan 687 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩)
63uhgrfun 29065 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
7 funrel 6506 . . . . 5 (Fun 𝐸 → Rel 𝐸)
86, 7syl 17 . . . 4 (𝐺 ∈ UHGraph → Rel 𝐸)
92, 3uhgrf 29061 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
10 ffvelcdm 7023 . . . . . . . 8 ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}))
11 eldifi 4080 . . . . . . . . 9 ((𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑥) ∈ 𝒫 𝑉)
1211elpwid 4560 . . . . . . . 8 ((𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑥) ⊆ 𝑉)
1310, 12syl 17 . . . . . . 7 ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸𝑥) ⊆ 𝑉)
1413rabeqcda 3407 . . . . . 6 (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉} = dom 𝐸)
1514eqimsscd 3988 . . . . 5 (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})
169, 15syl 17 . . . 4 (𝐺 ∈ UHGraph → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})
17 relssres 5978 . . . 4 ((Rel 𝐸 ∧ dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) = 𝐸)
188, 16, 17syl2anc 584 . . 3 (𝐺 ∈ UHGraph → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) = 𝐸)
1918opeq2d 4833 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩ = ⟨𝑉, 𝐸⟩)
205, 19eqtrd 2768 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4551  {csn 4577  cop 4583  dom cdm 5621  cres 5623  Rel wrel 5626  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  iEdgciedg 28996  UHGraphcuhgr 29055   ISubGr cisubgr 48022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-uhgr 29057  df-isubgr 48023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator