Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrvtxuhgr Structured version   Visualization version   GIF version

Theorem isubgrvtxuhgr 47877
Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isubgriedg.v 𝑉 = (Vtx‘𝐺)
isubgriedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isubgrvtxuhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)

Proof of Theorem isubgrvtxuhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3982 . . 3 (𝐺 ∈ UHGraph → 𝑉𝑉)
2 isubgriedg.v . . . 4 𝑉 = (Vtx‘𝐺)
3 isubgriedg.e . . . 4 𝐸 = (iEdg‘𝐺)
42, 3isisubgr 47875 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑉) → (𝐺 ISubGr 𝑉) = ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩)
51, 4mpdan 687 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩)
63uhgrfun 29045 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
7 funrel 6553 . . . . 5 (Fun 𝐸 → Rel 𝐸)
86, 7syl 17 . . . 4 (𝐺 ∈ UHGraph → Rel 𝐸)
92, 3uhgrf 29041 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
10 ffvelcdm 7071 . . . . . . . 8 ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}))
11 eldifi 4106 . . . . . . . . 9 ((𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑥) ∈ 𝒫 𝑉)
1211elpwid 4584 . . . . . . . 8 ((𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑥) ⊆ 𝑉)
1310, 12syl 17 . . . . . . 7 ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸𝑥) ⊆ 𝑉)
1413rabeqcda 3427 . . . . . 6 (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉} = dom 𝐸)
1514eqimsscd 4016 . . . . 5 (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})
169, 15syl 17 . . . 4 (𝐺 ∈ UHGraph → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})
17 relssres 6009 . . . 4 ((Rel 𝐸 ∧ dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) = 𝐸)
188, 16, 17syl2anc 584 . . 3 (𝐺 ∈ UHGraph → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) = 𝐸)
1918opeq2d 4856 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩ = ⟨𝑉, 𝐸⟩)
205, 19eqtrd 2770 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607  dom cdm 5654  cres 5656  Rel wrel 5659  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035   ISubGr cisubgr 47873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-uhgr 29037  df-isubgr 47874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator