| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrvtxuhgr | Structured version Visualization version GIF version | ||
| Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.) |
| Ref | Expression |
|---|---|
| isubgriedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgriedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrvtxuhgr | ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, 𝐸〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3973 | . . 3 ⊢ (𝐺 ∈ UHGraph → 𝑉 ⊆ 𝑉) | |
| 2 | isubgriedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | isubgriedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | isisubgr 47866 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ⊆ 𝑉) → (𝐺 ISubGr 𝑉) = 〈𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉})〉) |
| 5 | 1, 4 | mpdan 687 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉})〉) |
| 6 | 3 | uhgrfun 29000 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 7 | funrel 6536 | . . . . 5 ⊢ (Fun 𝐸 → Rel 𝐸) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Rel 𝐸) |
| 9 | 2, 3 | uhgrf 28996 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| 10 | ffvelcdm 7056 | . . . . . . . 8 ⊢ ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸‘𝑥) ∈ (𝒫 𝑉 ∖ {∅})) | |
| 11 | eldifi 4097 | . . . . . . . . 9 ⊢ ((𝐸‘𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸‘𝑥) ∈ 𝒫 𝑉) | |
| 12 | 11 | elpwid 4575 | . . . . . . . 8 ⊢ ((𝐸‘𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸‘𝑥) ⊆ 𝑉) |
| 13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸‘𝑥) ⊆ 𝑉) |
| 14 | 13 | rabeqcda 3420 | . . . . . 6 ⊢ (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉} = dom 𝐸) |
| 15 | 14 | eqimsscd 4007 | . . . . 5 ⊢ (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) |
| 16 | 9, 15 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) |
| 17 | relssres 5996 | . . . 4 ⊢ ((Rel 𝐸 ∧ dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) = 𝐸) | |
| 18 | 8, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) = 𝐸) |
| 19 | 18 | opeq2d 4847 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉})〉 = 〈𝑉, 𝐸〉) |
| 20 | 5, 19 | eqtrd 2765 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, 𝐸〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 〈cop 4598 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 ISubGr cisubgr 47864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-uhgr 28992 df-isubgr 47865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |