| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrvtxuhgr | Structured version Visualization version GIF version | ||
| Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.) |
| Ref | Expression |
|---|---|
| isubgriedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgriedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrvtxuhgr | ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, 𝐸〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3970 | . . 3 ⊢ (𝐺 ∈ UHGraph → 𝑉 ⊆ 𝑉) | |
| 2 | isubgriedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | isubgriedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | isisubgr 47862 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ⊆ 𝑉) → (𝐺 ISubGr 𝑉) = 〈𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉})〉) |
| 5 | 1, 4 | mpdan 687 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉})〉) |
| 6 | 3 | uhgrfun 28993 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 7 | funrel 6533 | . . . . 5 ⊢ (Fun 𝐸 → Rel 𝐸) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Rel 𝐸) |
| 9 | 2, 3 | uhgrf 28989 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| 10 | ffvelcdm 7053 | . . . . . . . 8 ⊢ ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸‘𝑥) ∈ (𝒫 𝑉 ∖ {∅})) | |
| 11 | eldifi 4094 | . . . . . . . . 9 ⊢ ((𝐸‘𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸‘𝑥) ∈ 𝒫 𝑉) | |
| 12 | 11 | elpwid 4572 | . . . . . . . 8 ⊢ ((𝐸‘𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸‘𝑥) ⊆ 𝑉) |
| 13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸‘𝑥) ⊆ 𝑉) |
| 14 | 13 | rabeqcda 3417 | . . . . . 6 ⊢ (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉} = dom 𝐸) |
| 15 | 14 | eqimsscd 4004 | . . . . 5 ⊢ (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) |
| 16 | 9, 15 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) |
| 17 | relssres 5993 | . . . 4 ⊢ ((Rel 𝐸 ∧ dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) = 𝐸) | |
| 18 | 8, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉}) = 𝐸) |
| 19 | 18 | opeq2d 4844 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑉})〉 = 〈𝑉, 𝐸〉) |
| 20 | 5, 19 | eqtrd 2764 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, 𝐸〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 〈cop 4595 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 iEdgciedg 28924 UHGraphcuhgr 28983 ISubGr cisubgr 47860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-uhgr 28985 df-isubgr 47861 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |