Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgredg Structured version   Visualization version   GIF version

Theorem isubgredg 47827
Description: An edge of an induced subgraph of a hypergraph is an edge of the hypergraph connecting vertices of the subgraph. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgredg.v 𝑉 = (Vtx‘𝐺)
isubgredg.e 𝐸 = (Edg‘𝐺)
isubgredg.h 𝐻 = (𝐺 ISubGr 𝑆)
isubgredg.i 𝐼 = (Edg‘𝐻)
Assertion
Ref Expression
isubgredg ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝐼 ↔ (𝐾𝐸𝐾𝑆)))

Proof of Theorem isubgredg
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgredg.h . . . . . . 7 𝐻 = (𝐺 ISubGr 𝑆)
21fveq2i 6878 . . . . . 6 (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆))
3 isubgredg.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
4 eqid 2735 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4isubgriedg 47824 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
62, 5eqtrid 2782 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
76rneqd 5918 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
87eleq2d 2820 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ 𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})))
93, 4uhgrf 28987 . . . . . . 7 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
109adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
1110ffnd 6706 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
12 ssrab2 4055 . . . . . 6 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
1312a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺))
1411, 13fnssresd 6661 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
15 fvelrnb 6938 . . . 4 (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
1614, 15syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
17 fvres 6894 . . . . . . . 8 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥))
1817adantl 481 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥))
1918eqeq1d 2737 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ((iEdg‘𝐺)‘𝑥) = 𝐾))
20 fveq2 6875 . . . . . . . . . . 11 (𝑖 = 𝑥 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑥))
2120sseq1d 3990 . . . . . . . . . 10 (𝑖 = 𝑥 → (((iEdg‘𝐺)‘𝑖) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
2221elrab 3671 . . . . . . . . 9 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ↔ (𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
234uhgrfun 28991 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → Fun (iEdg‘𝐺))
25 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → 𝑥 ∈ dom (iEdg‘𝐺))
26 fvelrn 7065 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺))
2724, 25, 26syl2anr 597 . . . . . . . . . . 11 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺))
28 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
2928adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
3027, 29jca 511 . . . . . . . . . 10 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
3130ex 412 . . . . . . . . 9 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)))
3222, 31sylbi 217 . . . . . . . 8 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)))
3332impcom 407 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
34 eleq1 2822 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ ran (iEdg‘𝐺)))
35 sseq1 3984 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆𝐾𝑆))
3634, 35anbi12d 632 . . . . . . 7 (((iEdg‘𝐺)‘𝑥) = 𝐾 → ((((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3733, 36syl5ibcom 245 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3819, 37sylbid 240 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3938rexlimdva 3141 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
40 edgval 28974 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
4140eqcomi 2744 . . . . . . . . . 10 ran (iEdg‘𝐺) = (Edg‘𝐺)
4241eleq2i 2826 . . . . . . . . 9 (𝐾 ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ (Edg‘𝐺))
434edgiedgb 28979 . . . . . . . . 9 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4442, 43bitrid 283 . . . . . . . 8 (Fun (iEdg‘𝐺) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4523, 44syl 17 . . . . . . 7 (𝐺 ∈ UHGraph → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4645adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
47 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ dom (iEdg‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → 𝐾 = ((iEdg‘𝐺)‘𝑥))
4948sseq1d 3990 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝐾𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5049biimpcd 249 . . . . . . . . . . . . . . 15 (𝐾𝑆 → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5150adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5251imp 406 . . . . . . . . . . . . 13 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
5347, 52, 22sylanbrc 583 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
54 simpr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
5548eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) = 𝐾)
5655adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) = 𝐾)
5717, 56sylan9eqr 2792 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)
5854, 57jca 511 . . . . . . . . . . . 12 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
5953, 58mpdan 687 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6059ex 412 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6160eximdv 1917 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → (∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
62 df-rex 3061 . . . . . . . . 9 (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)))
63 df-rex 3061 . . . . . . . . 9 (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6461, 62, 633imtr4g 296 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6564ex 412 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝑆 → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6665com23 86 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → (𝐾𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6746, 66sylbid 240 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) → (𝐾𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6867impd 410 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6939, 68impbid 212 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
708, 16, 693bitrd 305 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
71 isubgredg.i . . . 4 𝐼 = (Edg‘𝐻)
72 edgval 28974 . . . 4 (Edg‘𝐻) = ran (iEdg‘𝐻)
7371, 72eqtri 2758 . . 3 𝐼 = ran (iEdg‘𝐻)
7473eleq2i 2826 . 2 (𝐾𝐼𝐾 ∈ ran (iEdg‘𝐻))
75 isubgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
7675, 40eqtri 2758 . . . 4 𝐸 = ran (iEdg‘𝐺)
7776eleq2i 2826 . . 3 (𝐾𝐸𝐾 ∈ ran (iEdg‘𝐺))
7877anbi1i 624 . 2 ((𝐾𝐸𝐾𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆))
7970, 74, 783bitr4g 314 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝐼 ↔ (𝐾𝐸𝐾𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  {crab 3415  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  dom cdm 5654  ran crn 5655  cres 5656  Fun wfun 6524   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  Vtxcvtx 28921  iEdgciedg 28922  Edgcedg 28972  UHGraphcuhgr 28981   ISubGr cisubgr 47821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-2nd 7987  df-iedg 28924  df-edg 28973  df-uhgr 28983  df-isubgr 47822
This theorem is referenced by:  isubgr3stgrlem6  47931  isubgr3stgrlem7  47932  isubgr3stgrlem8  47933
  Copyright terms: Public domain W3C validator