Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgredg Structured version   Visualization version   GIF version

Theorem isubgredg 47860
Description: An edge of an induced subgraph of a hypergraph is an edge of the hypergraph connecting vertices of the subgraph. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgredg.v 𝑉 = (Vtx‘𝐺)
isubgredg.e 𝐸 = (Edg‘𝐺)
isubgredg.h 𝐻 = (𝐺 ISubGr 𝑆)
isubgredg.i 𝐼 = (Edg‘𝐻)
Assertion
Ref Expression
isubgredg ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝐼 ↔ (𝐾𝐸𝐾𝑆)))

Proof of Theorem isubgredg
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgredg.h . . . . . . 7 𝐻 = (𝐺 ISubGr 𝑆)
21fveq2i 6825 . . . . . 6 (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆))
3 isubgredg.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
4 eqid 2729 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4isubgriedg 47857 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
62, 5eqtrid 2776 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
76rneqd 5880 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
87eleq2d 2814 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ 𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})))
93, 4uhgrf 29007 . . . . . . 7 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
109adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
1110ffnd 6653 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
12 ssrab2 4031 . . . . . 6 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
1312a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺))
1411, 13fnssresd 6606 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
15 fvelrnb 6883 . . . 4 (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
1614, 15syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
17 fvres 6841 . . . . . . . 8 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥))
1817adantl 481 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥))
1918eqeq1d 2731 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ((iEdg‘𝐺)‘𝑥) = 𝐾))
20 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 𝑥 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑥))
2120sseq1d 3967 . . . . . . . . . 10 (𝑖 = 𝑥 → (((iEdg‘𝐺)‘𝑖) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
2221elrab 3648 . . . . . . . . 9 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ↔ (𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
234uhgrfun 29011 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → Fun (iEdg‘𝐺))
25 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → 𝑥 ∈ dom (iEdg‘𝐺))
26 fvelrn 7010 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺))
2724, 25, 26syl2anr 597 . . . . . . . . . . 11 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺))
28 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
2928adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
3027, 29jca 511 . . . . . . . . . 10 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
3130ex 412 . . . . . . . . 9 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)))
3222, 31sylbi 217 . . . . . . . 8 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)))
3332impcom 407 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
34 eleq1 2816 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ ran (iEdg‘𝐺)))
35 sseq1 3961 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆𝐾𝑆))
3634, 35anbi12d 632 . . . . . . 7 (((iEdg‘𝐺)‘𝑥) = 𝐾 → ((((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3733, 36syl5ibcom 245 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3819, 37sylbid 240 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3938rexlimdva 3130 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
40 edgval 28994 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
4140eqcomi 2738 . . . . . . . . . 10 ran (iEdg‘𝐺) = (Edg‘𝐺)
4241eleq2i 2820 . . . . . . . . 9 (𝐾 ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ (Edg‘𝐺))
434edgiedgb 28999 . . . . . . . . 9 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4442, 43bitrid 283 . . . . . . . 8 (Fun (iEdg‘𝐺) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4523, 44syl 17 . . . . . . 7 (𝐺 ∈ UHGraph → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4645adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
47 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ dom (iEdg‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → 𝐾 = ((iEdg‘𝐺)‘𝑥))
4948sseq1d 3967 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝐾𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5049biimpcd 249 . . . . . . . . . . . . . . 15 (𝐾𝑆 → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5150adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5251imp 406 . . . . . . . . . . . . 13 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
5347, 52, 22sylanbrc 583 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
54 simpr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
5548eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) = 𝐾)
5655adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) = 𝐾)
5717, 56sylan9eqr 2786 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)
5854, 57jca 511 . . . . . . . . . . . 12 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
5953, 58mpdan 687 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6059ex 412 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6160eximdv 1917 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → (∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
62 df-rex 3054 . . . . . . . . 9 (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)))
63 df-rex 3054 . . . . . . . . 9 (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6461, 62, 633imtr4g 296 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6564ex 412 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝑆 → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6665com23 86 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → (𝐾𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6746, 66sylbid 240 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) → (𝐾𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6867impd 410 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6939, 68impbid 212 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
708, 16, 693bitrd 305 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
71 isubgredg.i . . . 4 𝐼 = (Edg‘𝐻)
72 edgval 28994 . . . 4 (Edg‘𝐻) = ran (iEdg‘𝐻)
7371, 72eqtri 2752 . . 3 𝐼 = ran (iEdg‘𝐻)
7473eleq2i 2820 . 2 (𝐾𝐼𝐾 ∈ ran (iEdg‘𝐻))
75 isubgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
7675, 40eqtri 2752 . . . 4 𝐸 = ran (iEdg‘𝐺)
7776eleq2i 2820 . . 3 (𝐾𝐸𝐾 ∈ ran (iEdg‘𝐺))
7877anbi1i 624 . 2 ((𝐾𝐸𝐾𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆))
7970, 74, 783bitr4g 314 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝐼 ↔ (𝐾𝐸𝐾𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  {crab 3394  cdif 3900  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577  dom cdm 5619  ran crn 5620  cres 5621  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992  UHGraphcuhgr 29001   ISubGr cisubgr 47854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-iedg 28944  df-edg 28993  df-uhgr 29003  df-isubgr 47855
This theorem is referenced by:  isubgr3stgrlem6  47965  isubgr3stgrlem7  47966  isubgr3stgrlem8  47967
  Copyright terms: Public domain W3C validator