Step | Hyp | Ref
| Expression |
1 | | isubgredg.h |
. . . . . . 7
⊢ 𝐻 = (𝐺 ISubGr 𝑆) |
2 | 1 | fveq2i 6909 |
. . . . . 6
⊢
(iEdg‘𝐻) =
(iEdg‘(𝐺 ISubGr 𝑆)) |
3 | | isubgredg.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
4 | | eqid 2734 |
. . . . . . 7
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
5 | 3, 4 | isubgriedg 47786 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})) |
6 | 2, 5 | eqtrid 2786 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})) |
7 | 6 | rneqd 5951 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})) |
8 | 7 | eleq2d 2824 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ 𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))) |
9 | 3, 4 | uhgrf 29093 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
11 | 10 | ffnd 6737 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
12 | | ssrab2 4089 |
. . . . . 6
⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺) |
13 | 12 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)) |
14 | 11, 13 | fnssresd 6692 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) |
15 | | fvelrnb 6968 |
. . . 4
⊢
(((iEdg‘𝐺)
↾ {𝑖 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
16 | 14, 15 | syl 17 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
17 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥)) |
18 | 17 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥)) |
19 | 18 | eqeq1d 2736 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ((iEdg‘𝐺)‘𝑥) = 𝐾)) |
20 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑥 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑥)) |
21 | 20 | sseq1d 4026 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑥 → (((iEdg‘𝐺)‘𝑖) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
22 | 21 | elrab 3694 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ↔ (𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
23 | 4 | uhgrfun 29097 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → Fun (iEdg‘𝐺)) |
25 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)) |
26 | | fvelrn 7095 |
. . . . . . . . . . . 12
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺)) |
27 | 24, 25, 26 | syl2anr 597 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺)) |
28 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) |
29 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) |
30 | 27, 29 | jca 511 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉)) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
31 | 30 | ex 412 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))) |
32 | 22, 31 | sylbi 217 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))) |
33 | 32 | impcom 407 |
. . . . . . 7
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
34 | | eleq1 2826 |
. . . . . . . 8
⊢
(((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ ran (iEdg‘𝐺))) |
35 | | sseq1 4020 |
. . . . . . . 8
⊢
(((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆 ↔ 𝐾 ⊆ 𝑆)) |
36 | 34, 35 | anbi12d 632 |
. . . . . . 7
⊢
(((iEdg‘𝐺)‘𝑥) = 𝐾 → ((((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆))) |
37 | 33, 36 | syl5ibcom 245 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆))) |
38 | 19, 37 | sylbid 240 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆))) |
39 | 38 | rexlimdva 3152 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆))) |
40 | | edgval 29080 |
. . . . . . . . . . 11
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
41 | 40 | eqcomi 2743 |
. . . . . . . . . 10
⊢ ran
(iEdg‘𝐺) =
(Edg‘𝐺) |
42 | 41 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝐾 ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ (Edg‘𝐺)) |
43 | 4 | edgiedgb 29085 |
. . . . . . . . 9
⊢ (Fun
(iEdg‘𝐺) →
(𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥))) |
44 | 42, 43 | bitrid 283 |
. . . . . . . 8
⊢ (Fun
(iEdg‘𝐺) →
(𝐾 ∈ ran
(iEdg‘𝐺) ↔
∃𝑥 ∈ dom
(iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥))) |
45 | 23, 44 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥))) |
46 | 45 | adantr 480 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥))) |
47 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ dom (iEdg‘𝐺)) |
48 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → 𝐾 = ((iEdg‘𝐺)‘𝑥)) |
49 | 48 | sseq1d 4026 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝐾 ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
50 | 49 | biimpcd 249 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ⊆ 𝑆 → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)) |
52 | 51 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) |
53 | 47, 52, 22 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) |
54 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
UHGraph ∧ 𝑆 ⊆
𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) |
55 | 48 | eqcomd 2740 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) = 𝐾) |
56 | 55 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) = 𝐾) |
57 | 17, 56 | sylan9eqr 2796 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
UHGraph ∧ 𝑆 ⊆
𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾) |
58 | 54, 57 | jca 511 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
UHGraph ∧ 𝑆 ⊆
𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
59 | 53, 58 | mpdan 687 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
60 | 59 | ex 412 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))) |
61 | 60 | eximdv 1914 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) → (∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))) |
62 | | df-rex 3068 |
. . . . . . . . 9
⊢
(∃𝑥 ∈ dom
(iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) |
63 | | df-rex 3068 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
{𝑖 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
64 | 61, 62, 63 | 3imtr4g 296 |
. . . . . . . 8
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝐾 ⊆ 𝑆) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
65 | 64 | ex 412 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ⊆ 𝑆 → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))) |
66 | 65 | com23 86 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → (𝐾 ⊆ 𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))) |
67 | 46, 66 | sylbid 240 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) → (𝐾 ⊆ 𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))) |
68 | 67 | impd 410 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)) |
69 | 39, 68 | impbid 212 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆))) |
70 | 8, 16, 69 | 3bitrd 305 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆))) |
71 | | isubgredg.i |
. . . 4
⊢ 𝐼 = (Edg‘𝐻) |
72 | | edgval 29080 |
. . . 4
⊢
(Edg‘𝐻) = ran
(iEdg‘𝐻) |
73 | 71, 72 | eqtri 2762 |
. . 3
⊢ 𝐼 = ran (iEdg‘𝐻) |
74 | 73 | eleq2i 2830 |
. 2
⊢ (𝐾 ∈ 𝐼 ↔ 𝐾 ∈ ran (iEdg‘𝐻)) |
75 | | isubgredg.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
76 | 75, 40 | eqtri 2762 |
. . . 4
⊢ 𝐸 = ran (iEdg‘𝐺) |
77 | 76 | eleq2i 2830 |
. . 3
⊢ (𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ran (iEdg‘𝐺)) |
78 | 77 | anbi1i 624 |
. 2
⊢ ((𝐾 ∈ 𝐸 ∧ 𝐾 ⊆ 𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾 ⊆ 𝑆)) |
79 | 70, 74, 78 | 3bitr4g 314 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ 𝐼 ↔ (𝐾 ∈ 𝐸 ∧ 𝐾 ⊆ 𝑆))) |