Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgredg Structured version   Visualization version   GIF version

Theorem isubgredg 47870
Description: An edge of an induced subgraph of a hypergraph is an edge of the hypergraph connecting vertices of the subgraph. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgredg.v 𝑉 = (Vtx‘𝐺)
isubgredg.e 𝐸 = (Edg‘𝐺)
isubgredg.h 𝐻 = (𝐺 ISubGr 𝑆)
isubgredg.i 𝐼 = (Edg‘𝐻)
Assertion
Ref Expression
isubgredg ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝐼 ↔ (𝐾𝐸𝐾𝑆)))

Proof of Theorem isubgredg
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgredg.h . . . . . . 7 𝐻 = (𝐺 ISubGr 𝑆)
21fveq2i 6864 . . . . . 6 (iEdg‘𝐻) = (iEdg‘(𝐺 ISubGr 𝑆))
3 isubgredg.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
4 eqid 2730 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4isubgriedg 47867 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
62, 5eqtrid 2777 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐻) = ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
76rneqd 5905 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ran (iEdg‘𝐻) = ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}))
87eleq2d 2815 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ 𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})))
93, 4uhgrf 28996 . . . . . . 7 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
109adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
1110ffnd 6692 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
12 ssrab2 4046 . . . . . 6 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
1312a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺))
1411, 13fnssresd 6645 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
15 fvelrnb 6924 . . . 4 (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) Fn {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
1614, 15syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran ((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) ↔ ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
17 fvres 6880 . . . . . . . 8 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥))
1817adantl 481 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = ((iEdg‘𝐺)‘𝑥))
1918eqeq1d 2732 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ((iEdg‘𝐺)‘𝑥) = 𝐾))
20 fveq2 6861 . . . . . . . . . . 11 (𝑖 = 𝑥 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑥))
2120sseq1d 3981 . . . . . . . . . 10 (𝑖 = 𝑥 → (((iEdg‘𝐺)‘𝑖) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
2221elrab 3662 . . . . . . . . 9 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ↔ (𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
234uhgrfun 29000 . . . . . . . . . . . . 13 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423adantr 480 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → Fun (iEdg‘𝐺))
25 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → 𝑥 ∈ dom (iEdg‘𝐺))
26 fvelrn 7051 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺))
2724, 25, 26syl2anr 597 . . . . . . . . . . 11 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → ((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺))
28 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
2928adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
3027, 29jca 511 . . . . . . . . . 10 (((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ∧ (𝐺 ∈ UHGraph ∧ 𝑆𝑉)) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
3130ex 412 . . . . . . . . 9 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) → ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)))
3222, 31sylbi 217 . . . . . . . 8 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} → ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)))
3332impcom 407 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
34 eleq1 2817 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ ran (iEdg‘𝐺)))
35 sseq1 3975 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) = 𝐾 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆𝐾𝑆))
3634, 35anbi12d 632 . . . . . . 7 (((iEdg‘𝐺)‘𝑥) = 𝐾 → ((((iEdg‘𝐺)‘𝑥) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3733, 36syl5ibcom 245 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺)‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3819, 37sylbid 240 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → ((((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
3938rexlimdva 3135 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 → (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
40 edgval 28983 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
4140eqcomi 2739 . . . . . . . . . 10 ran (iEdg‘𝐺) = (Edg‘𝐺)
4241eleq2i 2821 . . . . . . . . 9 (𝐾 ∈ ran (iEdg‘𝐺) ↔ 𝐾 ∈ (Edg‘𝐺))
434edgiedgb 28988 . . . . . . . . 9 (Fun (iEdg‘𝐺) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4442, 43bitrid 283 . . . . . . . 8 (Fun (iEdg‘𝐺) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4523, 44syl 17 . . . . . . 7 (𝐺 ∈ UHGraph → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
4645adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥)))
47 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ dom (iEdg‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → 𝐾 = ((iEdg‘𝐺)‘𝑥))
4948sseq1d 3981 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝐾𝑆 ↔ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5049biimpcd 249 . . . . . . . . . . . . . . 15 (𝐾𝑆 → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5150adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆))
5251imp 406 . . . . . . . . . . . . 13 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆)
5347, 52, 22sylanbrc 583 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
54 simpr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})
5548eqcomd 2736 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ((iEdg‘𝐺)‘𝑥) = 𝐾)
5655adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → ((iEdg‘𝐺)‘𝑥) = 𝐾)
5717, 56sylan9eqr 2787 . . . . . . . . . . . . 13 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)
5854, 57jca 511 . . . . . . . . . . . 12 (((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) ∧ 𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆}) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
5953, 58mpdan 687 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) ∧ (𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥))) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6059ex 412 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6160eximdv 1917 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → (∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)) → ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
62 df-rex 3055 . . . . . . . . 9 (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑥(𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑥)))
63 df-rex 3055 . . . . . . . . 9 (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ ∃𝑥(𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} ∧ (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6461, 62, 633imtr4g 296 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝐾𝑆) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6564ex 412 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝑆 → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6665com23 86 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑥) → (𝐾𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6746, 66sylbid 240 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐺) → (𝐾𝑆 → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾)))
6867impd 410 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆) → ∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾))
6939, 68impbid 212 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (∃𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆} (((iEdg‘𝐺) ↾ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑆})‘𝑥) = 𝐾 ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
708, 16, 693bitrd 305 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾 ∈ ran (iEdg‘𝐻) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆)))
71 isubgredg.i . . . 4 𝐼 = (Edg‘𝐻)
72 edgval 28983 . . . 4 (Edg‘𝐻) = ran (iEdg‘𝐻)
7371, 72eqtri 2753 . . 3 𝐼 = ran (iEdg‘𝐻)
7473eleq2i 2821 . 2 (𝐾𝐼𝐾 ∈ ran (iEdg‘𝐻))
75 isubgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
7675, 40eqtri 2753 . . . 4 𝐸 = ran (iEdg‘𝐺)
7776eleq2i 2821 . . 3 (𝐾𝐸𝐾 ∈ ran (iEdg‘𝐺))
7877anbi1i 624 . 2 ((𝐾𝐸𝐾𝑆) ↔ (𝐾 ∈ ran (iEdg‘𝐺) ∧ 𝐾𝑆))
7970, 74, 783bitr4g 314 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐾𝐼 ↔ (𝐾𝐸𝐾𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  {crab 3408  cdif 3914  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  dom cdm 5641  ran crn 5642  cres 5643  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990   ISubGr cisubgr 47864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-isubgr 47865
This theorem is referenced by:  isubgr3stgrlem6  47974  isubgr3stgrlem7  47975  isubgr3stgrlem8  47976
  Copyright terms: Public domain W3C validator