Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgriedg Structured version   Visualization version   GIF version

Theorem isubgriedg 47973
Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isubgriedg.v 𝑉 = (Vtx‘𝐺)
isubgriedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isubgriedg ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem isubgriedg
StepHypRef Expression
1 isubgriedg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isubgriedg.e . . . 4 𝐸 = (iEdg‘𝐺)
31, 2isisubgr 47972 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
43fveq2d 6826 . 2 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩))
51fvexi 6836 . . . 4 𝑉 ∈ V
65ssex 5257 . . 3 (𝑆𝑉𝑆 ∈ V)
72fvexi 6836 . . . . 5 𝐸 ∈ V
87a1i 11 . . . 4 ((𝐺𝑊𝑆𝑉) → 𝐸 ∈ V)
98resexd 5976 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}) ∈ V)
10 opiedgfv 28985 . . 3 ((𝑆 ∈ V ∧ (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}) ∈ V) → (iEdg‘⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
116, 9, 10syl2an2 686 . 2 ((𝐺𝑊𝑆𝑉) → (iEdg‘⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
124, 11eqtrd 2766 1 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  cop 4579  dom cdm 5614  cres 5616  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  iEdgciedg 28975   ISubGr cisubgr 47970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-iedg 28977  df-isubgr 47971
This theorem is referenced by:  isubgredgss  47975  isubgredg  47976  isubgruhgr  47978  isubgrsubgr  47979  isubgrgrim  48039
  Copyright terms: Public domain W3C validator