![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgriedg | Structured version Visualization version GIF version |
Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025.) |
Ref | Expression |
---|---|
isubgriedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isubgriedg.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isubgriedg | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isubgriedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isubgriedg.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isisubgr 47734 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) = 〈𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})〉) |
4 | 3 | fveq2d 6924 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘〈𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})〉)) |
5 | 1 | fvexi 6934 | . . . 4 ⊢ 𝑉 ∈ V |
6 | 5 | ssex 5339 | . . 3 ⊢ (𝑆 ⊆ 𝑉 → 𝑆 ∈ V) |
7 | 2 | fvexi 6934 | . . . . 5 ⊢ 𝐸 ∈ V |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐸 ∈ V) |
9 | 8 | resexd 6057 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆}) ∈ V) |
10 | opiedgfv 29042 | . . 3 ⊢ ((𝑆 ∈ V ∧ (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆}) ∈ V) → (iEdg‘〈𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})〉) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})) | |
11 | 6, 9, 10 | syl2an2 685 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘〈𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})〉) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})) |
12 | 4, 11 | eqtrd 2780 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 〈cop 4654 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 iEdgciedg 29032 ISubGr cisubgr 47732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-iedg 29034 df-isubgr 47733 |
This theorem is referenced by: isubgruhgr 47738 isubgrsubgr 47739 isubgrgrim 47781 |
Copyright terms: Public domain | W3C validator |