Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgriedg Structured version   Visualization version   GIF version

Theorem isubgriedg 47843
Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isubgriedg.v 𝑉 = (Vtx‘𝐺)
isubgriedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isubgriedg ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem isubgriedg
StepHypRef Expression
1 isubgriedg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isubgriedg.e . . . 4 𝐸 = (iEdg‘𝐺)
31, 2isisubgr 47842 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
43fveq2d 6885 . 2 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩))
51fvexi 6895 . . . 4 𝑉 ∈ V
65ssex 5296 . . 3 (𝑆𝑉𝑆 ∈ V)
72fvexi 6895 . . . . 5 𝐸 ∈ V
87a1i 11 . . . 4 ((𝐺𝑊𝑆𝑉) → 𝐸 ∈ V)
98resexd 6020 . . 3 ((𝐺𝑊𝑆𝑉) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}) ∈ V)
10 opiedgfv 28991 . . 3 ((𝑆 ∈ V ∧ (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}) ∈ V) → (iEdg‘⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
116, 9, 10syl2an2 686 . 2 ((𝐺𝑊𝑆𝑉) → (iEdg‘⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
124, 11eqtrd 2771 1 ((𝐺𝑊𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931  cop 4612  dom cdm 5659  cres 5661  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  iEdgciedg 28981   ISubGr cisubgr 47840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-2nd 7994  df-iedg 28983  df-isubgr 47841
This theorem is referenced by:  isubgredgss  47845  isubgredg  47846  isubgruhgr  47848  isubgrsubgr  47849  isubgrgrim  47909
  Copyright terms: Public domain W3C validator