MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksn Structured version   Visualization version   GIF version

Theorem iswwlksn 29818
Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
iswwlksn (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))

Proof of Theorem iswwlksn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wwlksn 29817 . . 3 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
21eleq2d 2814 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
3 fveqeq2 6849 . . 3 (𝑤 = 𝑊 → ((♯‘𝑤) = (𝑁 + 1) ↔ (♯‘𝑊) = (𝑁 + 1)))
43elrab 3656 . 2 (𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
52, 4bitrdi 287 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047  0cn0 12418  chash 14271  WWalkscwwlks 29805   WWalksN cwwlksn 29806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-wwlksn 29811
This theorem is referenced by:  wwlksnprcl  29819  iswwlksnx  29820  wwlknbp  29822  wwlknp  29823  wwlkswwlksn  29845  wlklnwwlkln1  29848  wlklnwwlkln2lem  29862  wlknewwlksn  29867  wwlksnred  29872  wwlksnext  29873  wwlksnextproplem3  29891  wspthsnonn0vne  29897  elwspths2spth  29947  rusgrnumwwlkl1  29948  clwwlkel  30025  clwwlkf  30026  clwwlknwwlksnb  30034
  Copyright terms: Public domain W3C validator