MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksn Structured version   Visualization version   GIF version

Theorem iswwlksn 29130
Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
iswwlksn (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))

Proof of Theorem iswwlksn
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 wwlksn 29129 . . 3 (𝑁 ∈ β„•0 β†’ (𝑁 WWalksN 𝐺) = {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)})
21eleq2d 2819 . 2 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ π‘Š ∈ {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)}))
3 fveqeq2 6900 . . 3 (𝑀 = π‘Š β†’ ((β™―β€˜π‘€) = (𝑁 + 1) ↔ (β™―β€˜π‘Š) = (𝑁 + 1)))
43elrab 3683 . 2 (π‘Š ∈ {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)} ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))
52, 4bitrdi 286 1 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  β€˜cfv 6543  (class class class)co 7411  1c1 11113   + caddc 11115  β„•0cn0 12474  β™―chash 14292  WWalkscwwlks 29117   WWalksN cwwlksn 29118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-wwlksn 29123
This theorem is referenced by:  wwlksnprcl  29131  iswwlksnx  29132  wwlknbp  29134  wwlknp  29135  wwlkswwlksn  29157  wlklnwwlkln1  29160  wlklnwwlkln2lem  29174  wlknewwlksn  29179  wwlksnred  29184  wwlksnext  29185  wwlksnextproplem3  29203  wspthsnonn0vne  29209  elwspths2spth  29259  rusgrnumwwlkl1  29260  clwwlkel  29337  clwwlkf  29338  clwwlknwwlksnb  29346
  Copyright terms: Public domain W3C validator