MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksn Structured version   Visualization version   GIF version

Theorem iswwlksn 29092
Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
iswwlksn (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))

Proof of Theorem iswwlksn
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 wwlksn 29091 . . 3 (𝑁 ∈ β„•0 β†’ (𝑁 WWalksN 𝐺) = {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)})
21eleq2d 2820 . 2 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ π‘Š ∈ {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)}))
3 fveqeq2 6901 . . 3 (𝑀 = π‘Š β†’ ((β™―β€˜π‘€) = (𝑁 + 1) ↔ (β™―β€˜π‘Š) = (𝑁 + 1)))
43elrab 3684 . 2 (π‘Š ∈ {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)} ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))
52, 4bitrdi 287 1 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3433  β€˜cfv 6544  (class class class)co 7409  1c1 11111   + caddc 11113  β„•0cn0 12472  β™―chash 14290  WWalkscwwlks 29079   WWalksN cwwlksn 29080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-wwlksn 29085
This theorem is referenced by:  wwlksnprcl  29093  iswwlksnx  29094  wwlknbp  29096  wwlknp  29097  wwlkswwlksn  29119  wlklnwwlkln1  29122  wlklnwwlkln2lem  29136  wlknewwlksn  29141  wwlksnred  29146  wwlksnext  29147  wwlksnextproplem3  29165  wspthsnonn0vne  29171  elwspths2spth  29221  rusgrnumwwlkl1  29222  clwwlkel  29299  clwwlkf  29300  clwwlknwwlksnb  29308
  Copyright terms: Public domain W3C validator