| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswwlksn | Structured version Visualization version GIF version | ||
| Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| iswwlksn | ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlksn 29815 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
| 3 | fveqeq2 6831 | . . 3 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) = (𝑁 + 1) ↔ (♯‘𝑊) = (𝑁 + 1))) | |
| 4 | 3 | elrab 3642 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) |
| 5 | 2, 4 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 ℕ0cn0 12381 ♯chash 14237 WWalkscwwlks 29803 WWalksN cwwlksn 29804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-wwlksn 29809 |
| This theorem is referenced by: wwlksnprcl 29817 iswwlksnx 29818 wwlknbp 29820 wwlknp 29821 wwlkswwlksn 29843 wlklnwwlkln1 29846 wlklnwwlkln2lem 29860 wlknewwlksn 29865 wwlksnred 29870 wwlksnext 29871 wwlksnextproplem3 29889 wspthsnonn0vne 29895 elwspths2spth 29948 rusgrnumwwlkl1 29949 clwwlkel 30026 clwwlkf 30027 clwwlknwwlksnb 30035 |
| Copyright terms: Public domain | W3C validator |