| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswwlksn | Structured version Visualization version GIF version | ||
| Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| iswwlksn | ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlksn 29751 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
| 3 | fveqeq2 6881 | . . 3 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) = (𝑁 + 1) ↔ (♯‘𝑊) = (𝑁 + 1))) | |
| 4 | 3 | elrab 3669 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) |
| 5 | 2, 4 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3413 ‘cfv 6527 (class class class)co 7399 1c1 11122 + caddc 11124 ℕ0cn0 12493 ♯chash 14336 WWalkscwwlks 29739 WWalksN cwwlksn 29740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-wwlksn 29745 |
| This theorem is referenced by: wwlksnprcl 29753 iswwlksnx 29754 wwlknbp 29756 wwlknp 29757 wwlkswwlksn 29779 wlklnwwlkln1 29782 wlklnwwlkln2lem 29796 wlknewwlksn 29801 wwlksnred 29806 wwlksnext 29807 wwlksnextproplem3 29825 wspthsnonn0vne 29831 elwspths2spth 29881 rusgrnumwwlkl1 29882 clwwlkel 29959 clwwlkf 29960 clwwlknwwlksnb 29968 |
| Copyright terms: Public domain | W3C validator |