| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswwlksn | Structured version Visualization version GIF version | ||
| Description: A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| iswwlksn | ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlksn 29824 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) | |
| 2 | 1 | eleq2d 2821 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
| 3 | fveqeq2 6890 | . . 3 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) = (𝑁 + 1) ↔ (♯‘𝑊) = (𝑁 + 1))) | |
| 4 | 3 | elrab 3676 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) |
| 5 | 2, 4 | bitrdi 287 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ‘cfv 6536 (class class class)co 7410 1c1 11135 + caddc 11137 ℕ0cn0 12506 ♯chash 14353 WWalkscwwlks 29812 WWalksN cwwlksn 29813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-wwlksn 29818 |
| This theorem is referenced by: wwlksnprcl 29826 iswwlksnx 29827 wwlknbp 29829 wwlknp 29830 wwlkswwlksn 29852 wlklnwwlkln1 29855 wlklnwwlkln2lem 29869 wlknewwlksn 29874 wwlksnred 29879 wwlksnext 29880 wwlksnextproplem3 29898 wspthsnonn0vne 29904 elwspths2spth 29954 rusgrnumwwlkl1 29955 clwwlkel 30032 clwwlkf 30033 clwwlknwwlksnb 30041 |
| Copyright terms: Public domain | W3C validator |