MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem3 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem3 27617
Description: Lemma 3 for wwlksnextprop 27618. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextproplem3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑊
Allowed substitution hints:   𝐸(𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem wwlksnextproplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11925 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 27543 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2818 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
54wwlkbp 27546 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺)))
6 lencl 13871 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
7 eqcom 2825 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊))
8 nn0cn 11895 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
98adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
10 1cnd 10624 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → 1 ∈ ℂ)
11 nn0cn 11895 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
121, 11syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1312adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
14 subadd2 10878 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊)))
1514bicomd 224 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
169, 10, 13, 15syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
177, 16syl5bb 284 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
18 eqcom 2825 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ (𝑁 + 1) = ((♯‘𝑊) − 1))
1918biimpi 217 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) − 1) = (𝑁 + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2017, 19syl6bi 254 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1)))
2120ex 413 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2221com23 86 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
236, 22syl 17 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
245, 23simpl2im 504 . . . . . . . . . . . . . . 15 (𝑊 ∈ (WWalks‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2524imp31 418 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2625oveq2d 7161 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix ((♯‘𝑊) − 1)))
27 simpll 763 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ (WWalks‘𝐺))
28 nn0ge0 11910 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
29 2re 11699 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
31 nn0re 11894 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3230, 31addge02d 11217 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 2 ≤ (𝑁 + 2)))
3328, 32mpbid 233 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 2 ≤ (𝑁 + 2))
34 nn0cn 11895 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
35 1cnd 10624 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35, 35addassd 10651 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
37 1p1e2 11750 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = 2
3837a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
3938oveq2d 7161 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
4036, 39eqtrd 2853 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
4133, 40breqtrrd 5085 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ≤ ((𝑁 + 1) + 1))
4241adantl 482 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ ((𝑁 + 1) + 1))
43 breq2 5061 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4443ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4542, 44mpbird 258 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ (♯‘𝑊))
46 wwlksm1edg 27586 . . . . . . . . . . . . . 14 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4727, 45, 46syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4826, 47eqeltrd 2910 . . . . . . . . . . . 12 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
4948expcom 414 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
503, 49sylbid 241 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5150com12 32 . . . . . . . . 9 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5251adantr 481 . . . . . . . 8 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5352imp 407 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
54 wwlksnextprop.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
554, 54wwlknp 27548 . . . . . . . . . . 11 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
56 simpll 763 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
57 peano2nn0 11925 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
581, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
59 peano2re 10801 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6031, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6160lep1d 11559 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
62 elfz2nn0 12986 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
631, 58, 61, 62syl3anbrc 1335 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
6463adantl 482 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
65 oveq2 7153 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6665adantr 481 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6764, 66eleqtrrd 2913 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6867adantll 710 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6956, 68jca 512 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
7069ex 413 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
71703adant3 1124 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7255, 71syl 17 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7372adantr 481 . . . . . . . . 9 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7473imp 407 . . . . . . . 8 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
75 pfxlen 14033 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7674, 75syl 17 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7753, 76jca 512 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1)))
78 iswwlksn 27543 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
7978adantl 482 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
8077, 79mpbird 258 . . . . 5 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8180exp31 420 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
82 wwlksnextprop.x . . . 4 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8381, 82eleq2s 2928 . . 3 (𝑊𝑋 → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
84833imp 1103 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8582wwlksnextproplem1 27615 . . . 4 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
86853adant2 1123 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
87 simp2 1129 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊‘0) = 𝑃)
8886, 87eqtrd 2853 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃)
89 fveq1 6662 . . . 4 (𝑤 = (𝑊 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9089eqeq1d 2820 . . 3 (𝑤 = (𝑊 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑃 ↔ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
91 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
9290, 91elrab2 3680 . 2 ((𝑊 prefix (𝑁 + 1)) ∈ 𝑌 ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
9384, 88, 92sylanbrc 583 1 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  {cpr 4559   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528  cle 10664  cmin 10858  2c2 11680  0cn0 11885  ...cfz 12880  ..^cfzo 13021  chash 13678  Word cword 13849   prefix cpfx 14020  Vtxcvtx 26708  Edgcedg 26759  WWalkscwwlks 27530   WWalksN cwwlksn 27531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-substr 13991  df-pfx 14021  df-wwlks 27535  df-wwlksn 27536
This theorem is referenced by:  wwlksnextprop  27618
  Copyright terms: Public domain W3C validator