MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem3 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem3 29848
Description: Lemma 3 for wwlksnextprop 29849. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextproplem3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑊
Allowed substitution hints:   𝐸(𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem wwlksnextproplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12489 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 29775 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2730 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
54wwlkbp 29778 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺)))
6 lencl 14505 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
7 eqcom 2737 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊))
8 nn0cn 12459 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
98adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
10 1cnd 11176 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → 1 ∈ ℂ)
11 nn0cn 12459 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
121, 11syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1312adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
14 subadd2 11432 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊)))
1514bicomd 223 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
169, 10, 13, 15syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
177, 16bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
18 eqcom 2737 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ (𝑁 + 1) = ((♯‘𝑊) − 1))
1918biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) − 1) = (𝑁 + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2017, 19biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1)))
2120ex 412 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2221com23 86 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
236, 22syl 17 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
245, 23simpl2im 503 . . . . . . . . . . . . . . 15 (𝑊 ∈ (WWalks‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2524imp31 417 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2625oveq2d 7406 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix ((♯‘𝑊) − 1)))
27 simpll 766 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ (WWalks‘𝐺))
28 nn0ge0 12474 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
29 2re 12267 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
31 nn0re 12458 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3230, 31addge02d 11774 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 2 ≤ (𝑁 + 2)))
3328, 32mpbid 232 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 2 ≤ (𝑁 + 2))
34 nn0cn 12459 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
35 1cnd 11176 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35, 35addassd 11203 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
37 1p1e2 12313 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = 2
3837a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
3938oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
4036, 39eqtrd 2765 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
4133, 40breqtrrd 5138 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ≤ ((𝑁 + 1) + 1))
4241adantl 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ ((𝑁 + 1) + 1))
43 breq2 5114 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4443ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4542, 44mpbird 257 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ (♯‘𝑊))
46 wwlksm1edg 29818 . . . . . . . . . . . . . 14 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4727, 45, 46syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4826, 47eqeltrd 2829 . . . . . . . . . . . 12 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
4948expcom 413 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
503, 49sylbid 240 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5150com12 32 . . . . . . . . 9 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5251adantr 480 . . . . . . . 8 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5352imp 406 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
54 wwlksnextprop.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
554, 54wwlknp 29780 . . . . . . . . . . 11 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
56 simpll 766 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
57 peano2nn0 12489 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
581, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
59 peano2re 11354 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6031, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6160lep1d 12121 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
62 elfz2nn0 13586 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
631, 58, 61, 62syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
6463adantl 481 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
65 oveq2 7398 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6665adantr 480 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6764, 66eleqtrrd 2832 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6867adantll 714 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6956, 68jca 511 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
7069ex 412 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
71703adant3 1132 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7255, 71syl 17 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7372adantr 480 . . . . . . . . 9 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7473imp 406 . . . . . . . 8 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
75 pfxlen 14655 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7674, 75syl 17 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7753, 76jca 511 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1)))
78 iswwlksn 29775 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
7978adantl 481 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
8077, 79mpbird 257 . . . . 5 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8180exp31 419 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
82 wwlksnextprop.x . . . 4 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8381, 82eleq2s 2847 . . 3 (𝑊𝑋 → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
84833imp 1110 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8582wwlksnextproplem1 29846 . . . 4 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
86853adant2 1131 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
87 simp2 1137 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊‘0) = 𝑃)
8886, 87eqtrd 2765 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃)
89 fveq1 6860 . . . 4 (𝑤 = (𝑊 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9089eqeq1d 2732 . . 3 (𝑤 = (𝑊 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑃 ↔ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
91 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
9290, 91elrab2 3665 . 2 ((𝑊 prefix (𝑁 + 1)) ∈ 𝑌 ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
9384, 88, 92sylanbrc 583 1 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412  2c2 12248  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   prefix cpfx 14642  Vtxcvtx 28930  Edgcedg 28981  WWalkscwwlks 29762   WWalksN cwwlksn 29763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-substr 14613  df-pfx 14643  df-wwlks 29767  df-wwlksn 29768
This theorem is referenced by:  wwlksnextprop  29849
  Copyright terms: Public domain W3C validator