MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem3 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem3 27967
Description: Lemma 3 for wwlksnextprop 27968. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextproplem3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑊
Allowed substitution hints:   𝐸(𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem wwlksnextproplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12113 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 27894 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2734 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
54wwlkbp 27897 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺)))
6 lencl 14071 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
7 eqcom 2741 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊))
8 nn0cn 12083 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
98adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
10 1cnd 10811 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → 1 ∈ ℂ)
11 nn0cn 12083 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
121, 11syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1312adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
14 subadd2 11065 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊)))
1514bicomd 226 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
169, 10, 13, 15syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
177, 16syl5bb 286 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
18 eqcom 2741 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ (𝑁 + 1) = ((♯‘𝑊) − 1))
1918biimpi 219 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) − 1) = (𝑁 + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2017, 19syl6bi 256 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1)))
2120ex 416 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2221com23 86 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
236, 22syl 17 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
245, 23simpl2im 507 . . . . . . . . . . . . . . 15 (𝑊 ∈ (WWalks‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2524imp31 421 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2625oveq2d 7218 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix ((♯‘𝑊) − 1)))
27 simpll 767 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ (WWalks‘𝐺))
28 nn0ge0 12098 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
29 2re 11887 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
31 nn0re 12082 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3230, 31addge02d 11404 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 2 ≤ (𝑁 + 2)))
3328, 32mpbid 235 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 2 ≤ (𝑁 + 2))
34 nn0cn 12083 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
35 1cnd 10811 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35, 35addassd 10838 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
37 1p1e2 11938 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = 2
3837a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
3938oveq2d 7218 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
4036, 39eqtrd 2774 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
4133, 40breqtrrd 5071 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ≤ ((𝑁 + 1) + 1))
4241adantl 485 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ ((𝑁 + 1) + 1))
43 breq2 5047 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4443ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4542, 44mpbird 260 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ (♯‘𝑊))
46 wwlksm1edg 27937 . . . . . . . . . . . . . 14 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4727, 45, 46syl2anc 587 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4826, 47eqeltrd 2834 . . . . . . . . . . . 12 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
4948expcom 417 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
503, 49sylbid 243 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5150com12 32 . . . . . . . . 9 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5251adantr 484 . . . . . . . 8 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5352imp 410 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
54 wwlksnextprop.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
554, 54wwlknp 27899 . . . . . . . . . . 11 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
56 simpll 767 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
57 peano2nn0 12113 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
581, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
59 peano2re 10988 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6031, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6160lep1d 11746 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
62 elfz2nn0 13186 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
631, 58, 61, 62syl3anbrc 1345 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
6463adantl 485 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
65 oveq2 7210 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6665adantr 484 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6764, 66eleqtrrd 2837 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6867adantll 714 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6956, 68jca 515 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
7069ex 416 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
71703adant3 1134 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7255, 71syl 17 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7372adantr 484 . . . . . . . . 9 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7473imp 410 . . . . . . . 8 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
75 pfxlen 14231 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7674, 75syl 17 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7753, 76jca 515 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1)))
78 iswwlksn 27894 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
7978adantl 485 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
8077, 79mpbird 260 . . . . 5 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8180exp31 423 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
82 wwlksnextprop.x . . . 4 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8381, 82eleq2s 2852 . . 3 (𝑊𝑋 → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
84833imp 1113 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8582wwlksnextproplem1 27965 . . . 4 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
86853adant2 1133 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
87 simp2 1139 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊‘0) = 𝑃)
8886, 87eqtrd 2774 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃)
89 fveq1 6705 . . . 4 (𝑤 = (𝑊 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9089eqeq1d 2736 . . 3 (𝑤 = (𝑊 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑃 ↔ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
91 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
9290, 91elrab2 3598 . 2 ((𝑊 prefix (𝑁 + 1)) ∈ 𝑌 ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
9384, 88, 92sylanbrc 586 1 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  {crab 3058  Vcvv 3401  {cpr 4533   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715  cle 10851  cmin 11045  2c2 11868  0cn0 12073  ...cfz 13078  ..^cfzo 13221  chash 13879  Word cword 14052   prefix cpfx 14218  Vtxcvtx 27059  Edgcedg 27110  WWalkscwwlks 27881   WWalksN cwwlksn 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-substr 14189  df-pfx 14219  df-wwlks 27886  df-wwlksn 27887
This theorem is referenced by:  wwlksnextprop  27968
  Copyright terms: Public domain W3C validator