MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem3 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem3 28273
Description: Lemma 3 for wwlksnextprop 28274. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextproplem3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑊
Allowed substitution hints:   𝐸(𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem wwlksnextproplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12271 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 28200 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2738 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
54wwlkbp 28203 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺)))
6 lencl 14234 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
7 eqcom 2745 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊))
8 nn0cn 12241 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
98adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
10 1cnd 10968 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → 1 ∈ ℂ)
11 nn0cn 12241 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
121, 11syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1312adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
14 subadd2 11223 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊)))
1514bicomd 222 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
169, 10, 13, 15syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
177, 16syl5bb 283 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
18 eqcom 2745 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ (𝑁 + 1) = ((♯‘𝑊) − 1))
1918biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) − 1) = (𝑁 + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2017, 19syl6bi 252 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1)))
2120ex 413 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2221com23 86 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
236, 22syl 17 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
245, 23simpl2im 504 . . . . . . . . . . . . . . 15 (𝑊 ∈ (WWalks‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2524imp31 418 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2625oveq2d 7293 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix ((♯‘𝑊) − 1)))
27 simpll 764 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ (WWalks‘𝐺))
28 nn0ge0 12256 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
29 2re 12045 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
31 nn0re 12240 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3230, 31addge02d 11562 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 2 ≤ (𝑁 + 2)))
3328, 32mpbid 231 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 2 ≤ (𝑁 + 2))
34 nn0cn 12241 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
35 1cnd 10968 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35, 35addassd 10995 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
37 1p1e2 12096 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = 2
3837a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
3938oveq2d 7293 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
4036, 39eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
4133, 40breqtrrd 5104 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ≤ ((𝑁 + 1) + 1))
4241adantl 482 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ ((𝑁 + 1) + 1))
43 breq2 5080 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4443ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4542, 44mpbird 256 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ (♯‘𝑊))
46 wwlksm1edg 28243 . . . . . . . . . . . . . 14 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4727, 45, 46syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4826, 47eqeltrd 2839 . . . . . . . . . . . 12 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
4948expcom 414 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
503, 49sylbid 239 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5150com12 32 . . . . . . . . 9 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5251adantr 481 . . . . . . . 8 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5352imp 407 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
54 wwlksnextprop.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
554, 54wwlknp 28205 . . . . . . . . . . 11 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
56 simpll 764 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
57 peano2nn0 12271 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
581, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
59 peano2re 11146 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6031, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6160lep1d 11904 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
62 elfz2nn0 13345 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
631, 58, 61, 62syl3anbrc 1342 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
6463adantl 482 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
65 oveq2 7285 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6665adantr 481 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6764, 66eleqtrrd 2842 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6867adantll 711 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6956, 68jca 512 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
7069ex 413 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
71703adant3 1131 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7255, 71syl 17 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7372adantr 481 . . . . . . . . 9 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7473imp 407 . . . . . . . 8 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
75 pfxlen 14394 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7674, 75syl 17 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7753, 76jca 512 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1)))
78 iswwlksn 28200 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
7978adantl 482 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
8077, 79mpbird 256 . . . . 5 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8180exp31 420 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
82 wwlksnextprop.x . . . 4 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8381, 82eleq2s 2857 . . 3 (𝑊𝑋 → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
84833imp 1110 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8582wwlksnextproplem1 28271 . . . 4 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
86853adant2 1130 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
87 simp2 1136 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊‘0) = 𝑃)
8886, 87eqtrd 2778 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃)
89 fveq1 6775 . . . 4 (𝑤 = (𝑊 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9089eqeq1d 2740 . . 3 (𝑤 = (𝑊 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑃 ↔ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
91 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
9290, 91elrab2 3628 . 2 ((𝑊 prefix (𝑁 + 1)) ∈ 𝑌 ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
9384, 88, 92sylanbrc 583 1 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3431  {cpr 4565   class class class wbr 5076  cfv 6435  (class class class)co 7277  cc 10867  cr 10868  0cc0 10869  1c1 10870   + caddc 10872  cle 11008  cmin 11203  2c2 12026  0cn0 12231  ...cfz 13237  ..^cfzo 13380  chash 14042  Word cword 14215   prefix cpfx 14381  Vtxcvtx 27364  Edgcedg 27415  WWalkscwwlks 28187   WWalksN cwwlksn 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-z 12318  df-uz 12581  df-fz 13238  df-fzo 13381  df-hash 14043  df-word 14216  df-substr 14352  df-pfx 14382  df-wwlks 28192  df-wwlksn 28193
This theorem is referenced by:  wwlksnextprop  28274
  Copyright terms: Public domain W3C validator