MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem3 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem3 29944
Description: Lemma 3 for wwlksnextprop 29945. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextproplem3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑤,𝑊
Allowed substitution hints:   𝐸(𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem wwlksnextproplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12593 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 29871 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2740 . . . . . . . . . . . . . . . . 17 (Vtx‘𝐺) = (Vtx‘𝐺)
54wwlkbp 29874 . . . . . . . . . . . . . . . 16 (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺)))
6 lencl 14581 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
7 eqcom 2747 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊))
8 nn0cn 12563 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
98adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℂ)
10 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → 1 ∈ ℂ)
11 nn0cn 12563 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
121, 11syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1312adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
14 subadd2 11540 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ ((𝑁 + 1) + 1) = (♯‘𝑊)))
1514bicomd 223 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
169, 10, 13, 15syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑁 + 1) + 1) = (♯‘𝑊) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
177, 16bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑊) − 1) = (𝑁 + 1)))
18 eqcom 2747 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) = (𝑁 + 1) ↔ (𝑁 + 1) = ((♯‘𝑊) − 1))
1918biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) − 1) = (𝑁 + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2017, 19biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1)))
2120ex 412 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2221com23 86 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
236, 22syl 17 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
245, 23simpl2im 503 . . . . . . . . . . . . . . 15 (𝑊 ∈ (WWalks‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((♯‘𝑊) − 1))))
2524imp31 417 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) = ((♯‘𝑊) − 1))
2625oveq2d 7464 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix ((♯‘𝑊) − 1)))
27 simpll 766 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ (WWalks‘𝐺))
28 nn0ge0 12578 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
29 2re 12367 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
31 nn0re 12562 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3230, 31addge02d 11879 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 2 ≤ (𝑁 + 2)))
3328, 32mpbid 232 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 2 ≤ (𝑁 + 2))
34 nn0cn 12563 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
35 1cnd 11285 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35, 35addassd 11312 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
37 1p1e2 12418 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = 2
3837a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
3938oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
4036, 39eqtrd 2780 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
4133, 40breqtrrd 5194 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ≤ ((𝑁 + 1) + 1))
4241adantl 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ ((𝑁 + 1) + 1))
43 breq2 5170 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4443ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ 2 ≤ ((𝑁 + 1) + 1)))
4542, 44mpbird 257 . . . . . . . . . . . . . 14 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤ (♯‘𝑊))
46 wwlksm1edg 29914 . . . . . . . . . . . . . 14 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4727, 45, 46syl2anc 583 . . . . . . . . . . . . 13 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
4826, 47eqeltrd 2844 . . . . . . . . . . . 12 (((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
4948expcom 413 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
503, 49sylbid 240 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5150com12 32 . . . . . . . . 9 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5251adantr 480 . . . . . . . 8 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺)))
5352imp 406 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
54 wwlksnextprop.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
554, 54wwlknp 29876 . . . . . . . . . . 11 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
56 simpll 766 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
57 peano2nn0 12593 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
581, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
59 peano2re 11463 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6031, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6160lep1d 12226 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
62 elfz2nn0 13675 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
631, 58, 61, 62syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
6463adantl 481 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
65 oveq2 7456 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6665adantr 480 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
6764, 66eleqtrrd 2847 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6867adantll 713 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
6956, 68jca 511 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
7069ex 412 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
71703adant3 1132 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7255, 71syl 17 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7372adantr 480 . . . . . . . . 9 ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
7473imp 406 . . . . . . . 8 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
75 pfxlen 14731 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7674, 75syl 17 . . . . . . 7 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
7753, 76jca 511 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1)))
78 iswwlksn 29871 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
7978adantl 481 . . . . . 6 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
8077, 79mpbird 257 . . . . 5 (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8180exp31 419 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
82 wwlksnextprop.x . . . 4 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
8381, 82eleq2s 2862 . . 3 (𝑊𝑋 → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))))
84833imp 1111 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
8582wwlksnextproplem1 29942 . . . 4 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
86853adant2 1131 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
87 simp2 1137 . . 3 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊‘0) = 𝑃)
8886, 87eqtrd 2780 . 2 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃)
89 fveq1 6919 . . . 4 (𝑤 = (𝑊 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9089eqeq1d 2742 . . 3 (𝑤 = (𝑊 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑃 ↔ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
91 wwlksnextprop.y . . 3 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
9290, 91elrab2 3711 . 2 ((𝑊 prefix (𝑁 + 1)) ∈ 𝑌 ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 + 1))‘0) = 𝑃))
9384, 88, 92sylanbrc 582 1 ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cmin 11520  2c2 12348  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   prefix cpfx 14718  Vtxcvtx 29031  Edgcedg 29082  WWalkscwwlks 29858   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-substr 14689  df-pfx 14719  df-wwlks 29863  df-wwlksn 29864
This theorem is referenced by:  wwlksnextprop  29945
  Copyright terms: Public domain W3C validator