MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknp Structured version   Visualization version   GIF version

Theorem wwlknp 29364
Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.)
Hypotheses
Ref Expression
wwlkbp.v 𝑉 = (Vtxβ€˜πΊ)
wwlknp.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
wwlknp (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐺   𝑖,π‘Š   𝑖,𝑁
Allowed substitution hints:   𝐸(𝑖)   𝑉(𝑖)

Proof of Theorem wwlknp
StepHypRef Expression
1 wwlkbp.v . . 3 𝑉 = (Vtxβ€˜πΊ)
21wwlknbp 29363 . 2 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉))
3 iswwlksn 29359 . . . 4 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))
4 wwlknp.e . . . . . . . 8 𝐸 = (Edgβ€˜πΊ)
51, 4iswwlks 29357 . . . . . . 7 (π‘Š ∈ (WWalksβ€˜πΊ) ↔ (π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
6 simpl2 1190 . . . . . . . . 9 (((π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸) ∧ ((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0)) β†’ π‘Š ∈ Word 𝑉)
7 simprl 767 . . . . . . . . 9 (((π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸) ∧ ((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π‘Š) = (𝑁 + 1))
8 oveq1 7418 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘Š) = (𝑁 + 1) β†’ ((β™―β€˜π‘Š) βˆ’ 1) = ((𝑁 + 1) βˆ’ 1))
9 nn0cn 12486 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„‚)
10 pncan1 11642 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„‚ β†’ ((𝑁 + 1) βˆ’ 1) = 𝑁)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ β„•0 β†’ ((𝑁 + 1) βˆ’ 1) = 𝑁)
128, 11sylan9eq 2790 . . . . . . . . . . . . . 14 (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜π‘Š) βˆ’ 1) = 𝑁)
1312oveq2d 7427 . . . . . . . . . . . . 13 (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ (0..^((β™―β€˜π‘Š) βˆ’ 1)) = (0..^𝑁))
1413raleqdv 3323 . . . . . . . . . . . 12 (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ↔ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
1514biimpcd 248 . . . . . . . . . . 11 (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 β†’ (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
16153ad2ant3 1133 . . . . . . . . . 10 ((π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸) β†’ (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
1716imp 405 . . . . . . . . 9 (((π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸) ∧ ((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0)) β†’ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)
186, 7, 173jca 1126 . . . . . . . 8 (((π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸) ∧ ((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0)) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
1918ex 411 . . . . . . 7 ((π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸) β†’ (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)))
205, 19sylbi 216 . . . . . 6 (π‘Š ∈ (WWalksβ€˜πΊ) β†’ (((β™―β€˜π‘Š) = (𝑁 + 1) ∧ 𝑁 ∈ β„•0) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)))
2120expdimp 451 . . . . 5 ((π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1)) β†’ (𝑁 ∈ β„•0 β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)))
2221com12 32 . . . 4 (𝑁 ∈ β„•0 β†’ ((π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1)) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)))
233, 22sylbid 239 . . 3 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)))
24233ad2ant2 1132 . 2 ((𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸)))
252, 24mpcom 38 1 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  Vcvv 3472  βˆ…c0 4321  {cpr 4629  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  0cc0 11112  1c1 11113   + caddc 11115   βˆ’ cmin 11448  β„•0cn0 12476  ..^cfzo 13631  β™―chash 14294  Word cword 14468  Vtxcvtx 28523  Edgcedg 28574  WWalkscwwlks 29346   WWalksN cwwlksn 29347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-wwlks 29351  df-wwlksn 29352
This theorem is referenced by:  wwlknbp1  29365  wwlksnext  29414  wwlksnextbi  29415  wwlksnredwwlkn  29416  wwlksnredwwlkn0  29417  wwlksnextwrd  29418  wwlksnextsurj  29421  wwlksnextproplem2  29431  wwlksnextproplem3  29432  rusgrnumwwlks  29495  clwwlkinwwlk  29560  clwwlkf1  29569  wwlksext2clwwlk  29577  clwwlknonwwlknonb  29626  clwwlkvbij  29633  numclwwlk2lem1  29896
  Copyright terms: Public domain W3C validator