| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlknp | Structured version Visualization version GIF version | ||
| Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.) |
| Ref | Expression |
|---|---|
| wwlkbp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wwlknp.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| wwlknp | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlkbp.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | wwlknbp 29818 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) |
| 3 | iswwlksn 29814 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) | |
| 4 | wwlknp.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
| 5 | 1, 4 | iswwlks 29812 | . . . . . . 7 ⊢ (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 6 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉) | |
| 7 | simprl 770 | . . . . . . . . 9 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘𝑊) = (𝑁 + 1)) | |
| 8 | oveq1 7353 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1)) | |
| 9 | nn0cn 12388 | . . . . . . . . . . . . . . . 16 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 10 | pncan1 11538 | . . . . . . . . . . . . . . . 16 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . . . . . . . 15 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
| 12 | 8, 11 | sylan9eq 2786 | . . . . . . . . . . . . . 14 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = 𝑁) |
| 13 | 12 | oveq2d 7362 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^𝑁)) |
| 14 | 13 | raleqdv 3292 | . . . . . . . . . . . 12 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 15 | 14 | biimpcd 249 | . . . . . . . . . . 11 ⊢ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 16 | 15 | 3ad2ant3 1135 | . . . . . . . . . 10 ⊢ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 17 | 16 | imp 406 | . . . . . . . . 9 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) |
| 18 | 6, 7, 17 | 3jca 1128 | . . . . . . . 8 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 20 | 5, 19 | sylbi 217 | . . . . . 6 ⊢ (𝑊 ∈ (WWalks‘𝐺) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 21 | 20 | expdimp 452 | . . . . 5 ⊢ ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 22 | 21 | com12 32 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 23 | 3, 22 | sylbid 240 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 24 | 23 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 25 | 2, 24 | mpcom 38 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∅c0 4283 {cpr 4578 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 + caddc 11006 − cmin 11341 ℕ0cn0 12378 ..^cfzo 13551 ♯chash 14234 Word cword 14417 Vtxcvtx 28972 Edgcedg 29023 WWalkscwwlks 29801 WWalksN cwwlksn 29802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-wwlks 29806 df-wwlksn 29807 |
| This theorem is referenced by: wwlknbp1 29820 wwlksnext 29869 wwlksnextbi 29870 wwlksnredwwlkn 29871 wwlksnredwwlkn0 29872 wwlksnextwrd 29873 wwlksnextsurj 29876 wwlksnextproplem2 29886 wwlksnextproplem3 29887 rusgrnumwwlks 29950 clwwlkinwwlk 30015 clwwlkf1 30024 wwlksext2clwwlk 30032 clwwlknonwwlknonb 30081 clwwlkvbij 30088 numclwwlk2lem1 30351 |
| Copyright terms: Public domain | W3C validator |