MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknp Structured version   Visualization version   GIF version

Theorem wwlknp 29806
Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.)
Hypotheses
Ref Expression
wwlkbp.v 𝑉 = (Vtx‘𝐺)
wwlknp.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlknp (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊   𝑖,𝑁
Allowed substitution hints:   𝐸(𝑖)   𝑉(𝑖)

Proof of Theorem wwlknp
StepHypRef Expression
1 wwlkbp.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlknbp 29805 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
3 iswwlksn 29801 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
4 wwlknp.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
51, 4iswwlks 29799 . . . . . . 7 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 simpl2 1193 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
7 simprl 770 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘𝑊) = (𝑁 + 1))
8 oveq1 7360 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
9 nn0cn 12412 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
10 pncan1 11562 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
128, 11sylan9eq 2784 . . . . . . . . . . . . . 14 (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = 𝑁)
1312oveq2d 7369 . . . . . . . . . . . . 13 (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^𝑁))
1413raleqdv 3290 . . . . . . . . . . . 12 (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1514biimpcd 249 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
16153ad2ant3 1135 . . . . . . . . . 10 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1716imp 406 . . . . . . . . 9 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)
186, 7, 173jca 1128 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
1918ex 412 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
205, 19sylbi 217 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2120expdimp 452 . . . . 5 ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2221com12 32 . . . 4 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
233, 22sylbid 240 . . 3 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
24233ad2ant2 1134 . 2 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
252, 24mpcom 38 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  c0 4286  {cpr 4581  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031  cmin 11365  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438  Vtxcvtx 28959  Edgcedg 29010  WWalkscwwlks 29788   WWalksN cwwlksn 29789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-wwlks 29793  df-wwlksn 29794
This theorem is referenced by:  wwlknbp1  29807  wwlksnext  29856  wwlksnextbi  29857  wwlksnredwwlkn  29858  wwlksnredwwlkn0  29859  wwlksnextwrd  29860  wwlksnextsurj  29863  wwlksnextproplem2  29873  wwlksnextproplem3  29874  rusgrnumwwlks  29937  clwwlkinwwlk  30002  clwwlkf1  30011  wwlksext2clwwlk  30019  clwwlknonwwlknonb  30068  clwwlkvbij  30075  numclwwlk2lem1  30338
  Copyright terms: Public domain W3C validator