| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlknp | Structured version Visualization version GIF version | ||
| Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.) |
| Ref | Expression |
|---|---|
| wwlkbp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wwlknp.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| wwlknp | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlkbp.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | wwlknbp 29862 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) |
| 3 | iswwlksn 29858 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))) | |
| 4 | wwlknp.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
| 5 | 1, 4 | iswwlks 29856 | . . . . . . 7 ⊢ (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 6 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉) | |
| 7 | simprl 771 | . . . . . . . . 9 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘𝑊) = (𝑁 + 1)) | |
| 8 | oveq1 7438 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1)) | |
| 9 | nn0cn 12536 | . . . . . . . . . . . . . . . 16 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 10 | pncan1 11687 | . . . . . . . . . . . . . . . 16 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . . . . . . . 15 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
| 12 | 8, 11 | sylan9eq 2797 | . . . . . . . . . . . . . 14 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = 𝑁) |
| 13 | 12 | oveq2d 7447 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^𝑁)) |
| 14 | 13 | raleqdv 3326 | . . . . . . . . . . . 12 ⊢ (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 15 | 14 | biimpcd 249 | . . . . . . . . . . 11 ⊢ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 16 | 15 | 3ad2ant3 1136 | . . . . . . . . . 10 ⊢ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 17 | 16 | imp 406 | . . . . . . . . 9 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) |
| 18 | 6, 7, 17 | 3jca 1129 | . . . . . . . 8 ⊢ (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 20 | 5, 19 | sylbi 217 | . . . . . 6 ⊢ (𝑊 ∈ (WWalks‘𝐺) → (((♯‘𝑊) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 21 | 20 | expdimp 452 | . . . . 5 ⊢ ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 22 | 21 | com12 32 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 23 | 3, 22 | sylbid 240 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 24 | 23 | 3ad2ant2 1135 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))) |
| 25 | 2, 24 | mpcom 38 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 Vcvv 3480 ∅c0 4333 {cpr 4628 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 0cc0 11155 1c1 11156 + caddc 11158 − cmin 11492 ℕ0cn0 12526 ..^cfzo 13694 ♯chash 14369 Word cword 14552 Vtxcvtx 29013 Edgcedg 29064 WWalkscwwlks 29845 WWalksN cwwlksn 29846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-wwlks 29850 df-wwlksn 29851 |
| This theorem is referenced by: wwlknbp1 29864 wwlksnext 29913 wwlksnextbi 29914 wwlksnredwwlkn 29915 wwlksnredwwlkn0 29916 wwlksnextwrd 29917 wwlksnextsurj 29920 wwlksnextproplem2 29930 wwlksnextproplem3 29931 rusgrnumwwlks 29994 clwwlkinwwlk 30059 clwwlkf1 30068 wwlksext2clwwlk 30076 clwwlknonwwlknonb 30125 clwwlkvbij 30132 numclwwlk2lem1 30395 |
| Copyright terms: Public domain | W3C validator |