Step | Hyp | Ref
| Expression |
1 | | wwlkbp.v |
. . 3
β’ π = (VtxβπΊ) |
2 | 1 | wwlknbp 29363 |
. 2
β’ (π β (π WWalksN πΊ) β (πΊ β V β§ π β β0 β§ π β Word π)) |
3 | | iswwlksn 29359 |
. . . 4
β’ (π β β0
β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) |
4 | | wwlknp.e |
. . . . . . . 8
β’ πΈ = (EdgβπΊ) |
5 | 1, 4 | iswwlks 29357 |
. . . . . . 7
β’ (π β (WWalksβπΊ) β (π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ)) |
6 | | simpl2 1190 |
. . . . . . . . 9
β’ (((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β§ ((β―βπ) = (π + 1) β§ π β β0)) β π β Word π) |
7 | | simprl 767 |
. . . . . . . . 9
β’ (((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β§ ((β―βπ) = (π + 1) β§ π β β0)) β
(β―βπ) = (π + 1)) |
8 | | oveq1 7418 |
. . . . . . . . . . . . . . 15
β’
((β―βπ) =
(π + 1) β
((β―βπ) β
1) = ((π + 1) β
1)) |
9 | | nn0cn 12486 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β π β
β) |
10 | | pncan1 11642 |
. . . . . . . . . . . . . . . 16
β’ (π β β β ((π + 1) β 1) = π) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β ((π + 1) β 1)
= π) |
12 | 8, 11 | sylan9eq 2790 |
. . . . . . . . . . . . . 14
β’
(((β―βπ)
= (π + 1) β§ π β β0)
β ((β―βπ)
β 1) = π) |
13 | 12 | oveq2d 7427 |
. . . . . . . . . . . . 13
β’
(((β―βπ)
= (π + 1) β§ π β β0)
β (0..^((β―βπ) β 1)) = (0..^π)) |
14 | 13 | raleqdv 3323 |
. . . . . . . . . . . 12
β’
(((β―βπ)
= (π + 1) β§ π β β0)
β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ)) |
15 | 14 | biimpcd 248 |
. . . . . . . . . . 11
β’
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β (((β―βπ) = (π + 1) β§ π β β0) β
βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ)) |
16 | 15 | 3ad2ant3 1133 |
. . . . . . . . . 10
β’ ((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β (((β―βπ) = (π + 1) β§ π β β0) β
βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ)) |
17 | 16 | imp 405 |
. . . . . . . . 9
β’ (((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β§ ((β―βπ) = (π + 1) β§ π β β0)) β
βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ) |
18 | 6, 7, 17 | 3jca 1126 |
. . . . . . . 8
β’ (((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β§ ((β―βπ) = (π + 1) β§ π β β0)) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ)) |
19 | 18 | ex 411 |
. . . . . . 7
β’ ((π β β
β§ π β Word π β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ) β (((β―βπ) = (π + 1) β§ π β β0) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ))) |
20 | 5, 19 | sylbi 216 |
. . . . . 6
β’ (π β (WWalksβπΊ) β (((β―βπ) = (π + 1) β§ π β β0) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ))) |
21 | 20 | expdimp 451 |
. . . . 5
β’ ((π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)) β (π β β0 β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ))) |
22 | 21 | com12 32 |
. . . 4
β’ (π β β0
β ((π β
(WWalksβπΊ) β§
(β―βπ) = (π + 1)) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ))) |
23 | 3, 22 | sylbid 239 |
. . 3
β’ (π β β0
β (π β (π WWalksN πΊ) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ))) |
24 | 23 | 3ad2ant2 1132 |
. 2
β’ ((πΊ β V β§ π β β0
β§ π β Word π) β (π β (π WWalksN πΊ) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ))) |
25 | 2, 24 | mpcom 38 |
1
β’ (π β (π WWalksN πΊ) β (π β Word π β§ (β―βπ) = (π + 1) β§ βπ β (0..^π){(πβπ), (πβ(π + 1))} β πΈ)) |