MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnred Structured version   Visualization version   GIF version

Theorem wwlksnred 28257
Description: Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Assertion
Ref Expression
wwlksnred (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wwlksnred
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12273 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 28203 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2738 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2738 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 28201 . . . 4 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7 simp1 1135 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
8 nn0p1nn 12272 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
983ad2ant3 1134 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
101nn0red 12294 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1110lep1d 11906 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
12113ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
13 breq2 5078 . . . . . . . . . . . . . 14 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
14133ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1512, 14mpbird 256 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
16 pfxn0 14399 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ (♯‘𝑊)) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
177, 9, 15, 16syl3anc 1370 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
18173exp 1118 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅)))
19183ad2ant2 1133 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅)))
2019imp 407 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅))
2120impcom 408 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
22 pfxcl 14390 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
23223ad2ant2 1133 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
2423adantr 481 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
2524adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
26 oveq1 7282 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
271nn0cnd 12295 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
28 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2927, 28pncand 11333 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
3026, 29sylan9eq 2798 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = (𝑁 + 1))
3130oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^(𝑁 + 1)))
3231raleqdv 3348 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3332adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 nn0z 12343 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
35 nn0z 12343 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
361, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
37 nn0re 12242 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3837lep1d 11906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 1))
3934, 36, 383jca 1127 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4039ad2antll 726 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
41 eluz2 12588 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4240, 41sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (ℤ𝑁))
43 fzoss2 13415 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
45 ssralv 3987 . . . . . . . . . . . . . . . . . . 19 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
47 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word (Vtx‘𝐺))
48 nn0fz0 13354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 + 1) ∈ ℕ0 ↔ (𝑁 + 1) ∈ (0...(𝑁 + 1)))
491, 48sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5049ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
51 fzelp1 13308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
53 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
5453eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5655adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5752, 56mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
5857adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
59 fzossfzop1 13465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
6059sseld 3920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6160ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6261imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
63 pfxfv 14395 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(𝑁 + 1))) → ((𝑊 prefix (𝑁 + 1))‘𝑖) = (𝑊𝑖))
6447, 58, 62, 63syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix (𝑁 + 1))‘𝑖) = (𝑊𝑖))
6564eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊𝑖) = ((𝑊 prefix (𝑁 + 1))‘𝑖))
66 fzofzp1 13484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
6766adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
68 fzval3 13456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
6968eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
7034, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = (0...𝑁))
7170eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7271ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7372adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7467, 73mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
75 pfxfv 14395 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^(𝑁 + 1))) → ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7647, 58, 74, 75syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7776eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊‘(𝑖 + 1)) = ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)))
7865, 77preq12d 4677 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))})
7978eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8079biimpd 228 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8180ralimdva 3108 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8246, 81syld 47 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8333, 82sylbid 239 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8483imp 407 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
85 nn0cn 12243 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8685, 28pncand 11333 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
8786oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8887ad2antll 726 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8988adantr 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9089raleqdv 3348 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9184, 90mpbird 256 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
92 pfxlen 14396 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
9357, 92syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
9493oveq1d 7290 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((♯‘(𝑊 prefix (𝑁 + 1))) − 1) = ((𝑁 + 1) − 1))
9594oveq2d 7291 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)) = (0..^((𝑁 + 1) − 1)))
9695raleqdv 3348 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9796adantr 481 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9891, 97mpbird 256 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
9998exp31 420 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
10099com23 86 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
101100imp 407 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1021013adant1 1129 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
103102expdimp 453 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
104103impcom 408 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1054, 5iswwlks 28201 . . . . . . 7 ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ≠ ∅ ∧ (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10621, 25, 104, 105syl3anbrc 1342 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
107 peano2nn0 12273 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1081, 107syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
109 elfz2nn0 13347 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1101, 108, 11, 109syl3anbrc 1342 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
111110adantl 482 . . . . . . . . . . . . 13 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
112111, 55mpbird 256 . . . . . . . . . . . 12 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
113112anim2i 617 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
114113exp32 421 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
1151143ad2ant2 1133 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
116115imp 407 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
117116impcom 408 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
118117, 92syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
119 iswwlksn 28203 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
120119adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
121106, 118, 120mpbir2and 710 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
122121expcom 414 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
1236, 122sylanb 581 . . 3 ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
124123com12 32 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
1253, 124sylbid 239 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  c0 4256  {cpr 4563   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   prefix cpfx 14383  Vtxcvtx 27366  Edgcedg 27417  WWalkscwwlks 28190   WWalksN cwwlksn 28191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-substr 14354  df-pfx 14384  df-wwlks 28195  df-wwlksn 28196
This theorem is referenced by:  wwlksnextbi  28259  wwlksnredwwlkn  28260
  Copyright terms: Public domain W3C validator