MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnred Structured version   Visualization version   GIF version

Theorem wwlksnred 27092
Description: Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Assertion
Ref Expression
wwlksnred (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wwlksnred
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11580 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 27022 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2765 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2765 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 27020 . . . 4 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7 simp1 1166 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
8 nn0p1nn 11579 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
983ad2ant3 1165 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
101nn0red 11599 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1110lep1d 11209 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
12113ad2ant3 1165 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
13 breq2 4813 . . . . . . . . . . . . . 14 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
14133ad2ant2 1164 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1512, 14mpbird 248 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
16 swrdn0OLD 13632 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
177, 9, 15, 16syl3anc 1490 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
18173exp 1148 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)))
19183ad2ant2 1164 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)))
2019imp 395 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅))
2120impcom 396 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅)
22 swrdcl 13620 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
23223ad2ant2 1164 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
2423adantr 472 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
2524adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺))
26 oveq1 6849 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
271nn0cnd 11600 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
28 1cnd 10288 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2927, 28pncand 10647 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
3026, 29sylan9eq 2819 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = (𝑁 + 1))
3130oveq2d 6858 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^(𝑁 + 1)))
3231raleqdv 3292 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3332adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 nn0z 11647 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
35 nn0z 11647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
361, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
37 nn0re 11548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3837lep1d 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 1))
3934, 36, 383jca 1158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4039ad2antll 720 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
41 eluz2 11892 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4240, 41sylibr 225 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (ℤ𝑁))
43 fzoss2 12704 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
45 ssralv 3826 . . . . . . . . . . . . . . . . . . 19 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
47 simpl 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → 𝑊 ∈ Word (Vtx‘𝐺))
4847adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word (Vtx‘𝐺))
49 nn0fz0 12645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 + 1) ∈ ℕ0 ↔ (𝑁 + 1) ∈ (0...(𝑁 + 1)))
501, 49sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5150ad2antll 720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
52 fzelp1 12600 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
54 oveq2 6850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
5554eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5655adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5756adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5853, 57mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
5958adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
60 fzossfzop1 12754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
6160sseld 3760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6261ad2antll 720 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6362imp 395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
64 swrd0fvOLD 13641 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(𝑁 + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖) = (𝑊𝑖))
6548, 59, 63, 64syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖) = (𝑊𝑖))
6665eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊𝑖) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖))
67 fzofzp1 12773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
6867adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
69 fzval3 12745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
7069eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
7134, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = (0...𝑁))
7271eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7372ad2antll 720 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7473adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7568, 74mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
76 swrd0fvOLD 13641 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^(𝑁 + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7748, 59, 75, 76syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7877eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊‘(𝑖 + 1)) = ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1)))
7966, 78preq12d 4431 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))})
8079eleq1d 2829 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8180biimpd 220 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8281ralimdva 3109 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8346, 82syld 47 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8433, 83sylbid 231 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8584imp 395 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
86 nn0cn 11549 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8786, 28pncand 10647 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
8887oveq2d 6858 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8988ad2antll 720 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9089adantr 472 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9190raleqdv 3292 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9285, 91mpbird 248 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
931ad2antll 720 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ ℕ0)
94 simpl 474 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑊) = ((𝑁 + 1) + 1))
9594adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘𝑊) = ((𝑁 + 1) + 1))
96 swrd0len0OLD 13638 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ0 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
9747, 93, 95, 96syl3anc 1490 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
9897oveq1d 6857 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1) = ((𝑁 + 1) − 1))
9998oveq2d 6858 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)) = (0..^((𝑁 + 1) − 1)))
10099raleqdv 3292 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
101100adantr 472 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10292, 101mpbird 248 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
103102exp31 410 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
104103com23 86 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
105104imp 395 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1061053adant1 1160 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
107106expdimp 444 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
108107impcom 396 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1094, 5iswwlks 27020 . . . . . . 7 ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalks‘𝐺) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) − 1)){((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘𝑖), ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
11021, 25, 108, 109syl3anbrc 1443 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalks‘𝐺))
111 peano2nn0 11580 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1121, 111syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
113 elfz2nn0 12638 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1141, 112, 11, 113syl3anbrc 1443 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
115114adantl 473 . . . . . . . . . . . . 13 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
116115, 56mpbird 248 . . . . . . . . . . . 12 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
117116anim2i 610 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
118117exp32 411 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
1191183ad2ant2 1164 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
120119imp 395 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
121120impcom 396 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
122 swrd0lenOLD 13623 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
123121, 122syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))
124 iswwlksn 27022 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
125124adantr 472 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑁 + 1))))
126110, 123, 125mpbir2and 704 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺))
127126expcom 402 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
1286, 127sylanb 576 . . 3 ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
129128com12 32 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
1303, 129sylbid 231 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wss 3732  c0 4079  {cpr 4336  cop 4340   class class class wbr 4809  cfv 6068  (class class class)co 6842  0cc0 10189  1c1 10190   + caddc 10192  cle 10329  cmin 10520  cn 11274  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486   substr csubstr 13616  Vtxcvtx 26165  Edgcedg 26216  WWalkscwwlks 27009   WWalksN cwwlksn 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-substr 13617  df-wwlks 27014  df-wwlksn 27015
This theorem is referenced by:  wwlksnextbi  27094  wwlksnredwwlkn  27095
  Copyright terms: Public domain W3C validator