MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnred Structured version   Visualization version   GIF version

Theorem wwlksnred 29822
Description: Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Assertion
Ref Expression
wwlksnred (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wwlksnred
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12482 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 29768 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2729 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2729 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 29766 . . . 4 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7 simp1 1136 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
8 nn0p1nn 12481 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
983ad2ant3 1135 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
101nn0red 12504 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1110lep1d 12114 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
12113ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
13 breq2 5111 . . . . . . . . . . . . . 14 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
14133ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1512, 14mpbird 257 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
16 pfxn0 14651 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ (♯‘𝑊)) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
177, 9, 15, 16syl3anc 1373 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
18173exp 1119 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅)))
19183ad2ant2 1134 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅)))
2019imp 406 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅))
2120impcom 407 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
22 pfxcl 14642 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
23223ad2ant2 1134 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
2423adantr 480 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
2524adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
26 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
271nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
28 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2927, 28pncand 11534 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
3026, 29sylan9eq 2784 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = (𝑁 + 1))
3130oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^(𝑁 + 1)))
3231raleqdv 3299 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 nn0z 12554 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
35 nn0z 12554 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
361, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
37 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3837lep1d 12114 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 1))
3934, 36, 383jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4039ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
41 eluz2 12799 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4240, 41sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (ℤ𝑁))
43 fzoss2 13648 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
45 ssralv 4015 . . . . . . . . . . . . . . . . . . 19 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
47 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word (Vtx‘𝐺))
48 nn0fz0 13586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 + 1) ∈ ℕ0 ↔ (𝑁 + 1) ∈ (0...(𝑁 + 1)))
491, 48sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5049ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
51 fzelp1 13537 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
53 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
5453eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5655adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5752, 56mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
5857adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
59 fzossfzop1 13704 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
6059sseld 3945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6160ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6261imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
63 pfxfv 14647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(𝑁 + 1))) → ((𝑊 prefix (𝑁 + 1))‘𝑖) = (𝑊𝑖))
6447, 58, 62, 63syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix (𝑁 + 1))‘𝑖) = (𝑊𝑖))
6564eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊𝑖) = ((𝑊 prefix (𝑁 + 1))‘𝑖))
66 fzofzp1 13725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
6766adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
68 fzval3 13695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
6968eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
7034, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = (0...𝑁))
7170eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7271ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7467, 73mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
75 pfxfv 14647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^(𝑁 + 1))) → ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7647, 58, 74, 75syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7776eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊‘(𝑖 + 1)) = ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)))
7865, 77preq12d 4705 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))})
7978eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8079biimpd 229 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8180ralimdva 3145 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8246, 81syld 47 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8333, 82sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8483imp 406 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
85 nn0cn 12452 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8685, 28pncand 11534 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
8786oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8887ad2antll 729 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8988adantr 480 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9089raleqdv 3299 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9184, 90mpbird 257 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
92 pfxlen 14648 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
9357, 92syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
9493oveq1d 7402 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((♯‘(𝑊 prefix (𝑁 + 1))) − 1) = ((𝑁 + 1) − 1))
9594oveq2d 7403 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)) = (0..^((𝑁 + 1) − 1)))
9695raleqdv 3299 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9796adantr 480 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9891, 97mpbird 257 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
9998exp31 419 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
10099com23 86 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
101100imp 406 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1021013adant1 1130 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
103102expdimp 452 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
104103impcom 407 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1054, 5iswwlks 29766 . . . . . . 7 ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ≠ ∅ ∧ (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10621, 25, 104, 105syl3anbrc 1344 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
107 peano2nn0 12482 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1081, 107syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
109 elfz2nn0 13579 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1101, 108, 11, 109syl3anbrc 1344 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
111110adantl 481 . . . . . . . . . . . . 13 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
112111, 55mpbird 257 . . . . . . . . . . . 12 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
113112anim2i 617 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
114113exp32 420 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
1151143ad2ant2 1134 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
116115imp 406 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
117116impcom 407 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
118117, 92syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
119 iswwlksn 29768 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
120119adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
121106, 118, 120mpbir2and 713 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
122121expcom 413 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
1236, 122sylanb 581 . . 3 ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
124123com12 32 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
1253, 124sylbid 240 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   prefix cpfx 14635  Vtxcvtx 28923  Edgcedg 28974  WWalkscwwlks 29755   WWalksN cwwlksn 29756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606  df-pfx 14636  df-wwlks 29760  df-wwlksn 29761
This theorem is referenced by:  wwlksnextbi  29824  wwlksnredwwlkn  29825
  Copyright terms: Public domain W3C validator