MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnred Structured version   Visualization version   GIF version

Theorem wwlksnred 27664
Description: Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Assertion
Ref Expression
wwlksnred (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wwlksnred
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11931 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 iswwlksn 27610 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))))
4 eqid 2821 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2821 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 27608 . . . 4 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7 simp1 1132 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
8 nn0p1nn 11930 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
983ad2ant3 1131 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
101nn0red 11950 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1110lep1d 11565 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
12113ad2ant3 1131 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
13 breq2 5063 . . . . . . . . . . . . . 14 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
14133ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1512, 14mpbird 259 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
16 pfxn0 14042 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ (♯‘𝑊)) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
177, 9, 15, 16syl3anc 1367 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
18173exp 1115 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅)))
19183ad2ant2 1130 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅)))
2019imp 409 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ≠ ∅))
2120impcom 410 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ≠ ∅)
22 pfxcl 14033 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
23223ad2ant2 1130 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
2423adantr 483 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
2524adantl 484 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺))
26 oveq1 7157 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
271nn0cnd 11951 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
28 1cnd 10630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2927, 28pncand 10992 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
3026, 29sylan9eq 2876 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑊) − 1) = (𝑁 + 1))
3130oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (0..^((♯‘𝑊) − 1)) = (0..^(𝑁 + 1)))
3231raleqdv 3416 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3332adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 nn0z 11999 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
35 nn0z 11999 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
361, 35syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
37 nn0re 11900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3837lep1d 11565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 1))
3934, 36, 383jca 1124 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4039ad2antll 727 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
41 eluz2 12243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑁 ≤ (𝑁 + 1)))
4240, 41sylibr 236 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (ℤ𝑁))
43 fzoss2 13059 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
4442, 43syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
45 ssralv 4033 . . . . . . . . . . . . . . . . . . 19 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
47 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word (Vtx‘𝐺))
48 nn0fz0 12999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 + 1) ∈ ℕ0 ↔ (𝑁 + 1) ∈ (0...(𝑁 + 1)))
491, 48sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
5049ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
51 fzelp1 12953 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
53 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (0...(♯‘𝑊)) = (0...((𝑁 + 1) + 1)))
5453eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5554adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5655adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑁 + 1) ∈ (0...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1))))
5752, 56mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
5857adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
59 fzossfzop1 13109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
6059sseld 3966 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6160ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
6261imp 409 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
63 pfxfv 14038 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(𝑁 + 1))) → ((𝑊 prefix (𝑁 + 1))‘𝑖) = (𝑊𝑖))
6447, 58, 62, 63syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix (𝑁 + 1))‘𝑖) = (𝑊𝑖))
6564eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊𝑖) = ((𝑊 prefix (𝑁 + 1))‘𝑖))
66 fzofzp1 13128 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
6766adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
68 fzval3 13100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
6968eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
7034, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = (0...𝑁))
7170eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7271ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7372adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(𝑁 + 1)) ↔ (𝑖 + 1) ∈ (0...𝑁)))
7467, 73mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
75 pfxfv 14038 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^(𝑁 + 1))) → ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7647, 58, 74, 75syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7776eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑊‘(𝑖 + 1)) = ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1)))
7865, 77preq12d 4671 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))})
7978eleq1d 2897 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8079biimpd 231 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8180ralimdva 3177 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8246, 81syld 47 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8333, 82sylbid 242 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8483imp 409 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
85 nn0cn 11901 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8685, 28pncand 10992 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
8786oveq2d 7166 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8887ad2antll 727 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
8988adantr 483 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (0..^((𝑁 + 1) − 1)) = (0..^𝑁))
9089raleqdv 3416 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^𝑁){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9184, 90mpbird 259 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
92 pfxlen 14039 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
9357, 92syldan 593 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
9493oveq1d 7165 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → ((♯‘(𝑊 prefix (𝑁 + 1))) − 1) = ((𝑁 + 1) − 1))
9594oveq2d 7166 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)) = (0..^((𝑁 + 1) − 1)))
9695raleqdv 3416 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9796adantr 483 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9891, 97mpbird 259 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
9998exp31 422 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
10099com23 86 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
101100imp 409 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1021013adant1 1126 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
103102expdimp 455 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
104103impcom 410 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1054, 5iswwlks 27608 . . . . . . 7 ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ≠ ∅ ∧ (𝑊 prefix (𝑁 + 1)) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix (𝑁 + 1))) − 1)){((𝑊 prefix (𝑁 + 1))‘𝑖), ((𝑊 prefix (𝑁 + 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10621, 25, 104, 105syl3anbrc 1339 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺))
107 peano2nn0 11931 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1081, 107syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
109 elfz2nn0 12992 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1101, 108, 11, 109syl3anbrc 1339 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
111110adantl 484 . . . . . . . . . . . . 13 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)))
112111, 55mpbird 259 . . . . . . . . . . . 12 (((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(♯‘𝑊)))
113112anim2i 618 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) = ((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
114113exp32 423 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
1151143ad2ant2 1130 . . . . . . . . 9 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))))
116115imp 409 . . . . . . . 8 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊)))))
117116impcom 410 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(♯‘𝑊))))
118117, 92syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))
119 iswwlksn 27610 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
120119adantr 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 prefix (𝑁 + 1)) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 prefix (𝑁 + 1))) = (𝑁 + 1))))
121106, 118, 120mpbir2and 711 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
122121expcom 416 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
1236, 122sylanb 583 . . 3 ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
124123com12 32 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
1253, 124sylbid 242 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wss 3936  c0 4291  {cpr 4563   class class class wbr 5059  cfv 6350  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  cle 10670  cmin 10864  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855   prefix cpfx 14026  Vtxcvtx 26775  Edgcedg 26826  WWalkscwwlks 27597   WWalksN cwwlksn 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-substr 13997  df-pfx 14027  df-wwlks 27602  df-wwlksn 27603
This theorem is referenced by:  wwlksnextbi  27666  wwlksnredwwlkn  27667
  Copyright terms: Public domain W3C validator