Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlklnwwlkln1 | Structured version Visualization version GIF version |
Description: The sequence of vertices in a walk of length 𝑁 is a walk as word of length 𝑁 in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
Ref | Expression |
---|---|
wlklnwwlkln1 | ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkcl 28272 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (♯‘𝐹) ∈ ℕ0) |
3 | wlkiswwlks1 28521 | . . . . . . . 8 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ (WWalks‘𝐺))) | |
4 | 3 | com12 32 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺))) |
5 | 4 | ad2antrl 725 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺))) |
6 | 5 | imp 407 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (WWalks‘𝐺)) |
7 | wlklenvp1 28275 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
8 | 7 | ad2antrl 725 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
9 | oveq1 7345 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) + 1) = (𝑁 + 1)) | |
10 | 9 | adantl 482 | . . . . . . . 8 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
12 | 8, 11 | eqtrd 2776 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = (𝑁 + 1)) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (♯‘𝑃) = (𝑁 + 1)) |
14 | eleq1 2824 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
15 | iswwlksn 28492 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) | |
16 | 14, 15 | syl6bi 252 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))) |
17 | 16 | adantl 482 | . . . . . . 7 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))) |
18 | 17 | impcom 408 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) |
19 | 18 | adantr 481 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) |
20 | 6, 13, 19 | mpbir2and 710 | . . . 4 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (𝑁 WWalksN 𝐺)) |
21 | 20 | ex 413 | . . 3 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
22 | 2, 21 | mpancom 685 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
23 | 22 | com12 32 | 1 ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5093 ‘cfv 6480 (class class class)co 7338 1c1 10974 + caddc 10976 ℕ0cn0 12335 ♯chash 14146 UPGraphcupgr 27740 Walkscwlks 28253 WWalkscwwlks 28479 WWalksN cwwlksn 28480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-oadd 8372 df-er 8570 df-map 8689 df-pm 8690 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-n0 12336 df-xnn0 12408 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-hash 14147 df-word 14319 df-edg 27708 df-uhgr 27718 df-upgr 27742 df-wlks 28256 df-wwlks 28484 df-wwlksn 28485 |
This theorem is referenced by: wlklnwwlkn 28538 wlklnwwlknupgr 28540 |
Copyright terms: Public domain | W3C validator |