MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln1 Structured version   Visualization version   GIF version

Theorem wlklnwwlkln1 28134
Description: The sequence of vertices in a walk of length 𝑁 is a walk as word of length 𝑁 in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wlklnwwlkln1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wlklnwwlkln1
StepHypRef Expression
1 wlkcl 27885 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
21adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (♯‘𝐹) ∈ ℕ0)
3 wlkiswwlks1 28133 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃𝑃 ∈ (WWalks‘𝐺)))
43com12 32 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺)))
54ad2antrl 724 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺)))
65imp 406 . . . . 5 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (WWalks‘𝐺))
7 wlklenvp1 27888 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
87ad2antrl 724 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = ((♯‘𝐹) + 1))
9 oveq1 7262 . . . . . . . . 9 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) + 1) = (𝑁 + 1))
109adantl 481 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) + 1) = (𝑁 + 1))
1110adantl 481 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → ((♯‘𝐹) + 1) = (𝑁 + 1))
128, 11eqtrd 2778 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = (𝑁 + 1))
1312adantr 480 . . . . 5 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (♯‘𝑃) = (𝑁 + 1))
14 eleq1 2826 . . . . . . . . 9 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
15 iswwlksn 28104 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
1614, 15syl6bi 252 . . . . . . . 8 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))))
1716adantl 481 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))))
1817impcom 407 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
1918adantr 480 . . . . 5 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
206, 13, 19mpbir2and 709 . . . 4 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (𝑁 WWalksN 𝐺))
2120ex 412 . . 3 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺)))
222, 21mpancom 684 . 2 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺)))
2322com12 32 1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  0cn0 12163  chash 13972  UPGraphcupgr 27353  Walkscwlks 27866  WWalkscwwlks 28091   WWalksN cwwlksn 28092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-wlks 27869  df-wwlks 28096  df-wwlksn 28097
This theorem is referenced by:  wlklnwwlkn  28150  wlklnwwlknupgr  28152
  Copyright terms: Public domain W3C validator