Step | Hyp | Ref
| Expression |
1 | | wlkcl 29136 |
. . . 4
β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β
β0) |
2 | 1 | adantr 480 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = π) β (β―βπΉ) β
β0) |
3 | | wlkiswwlks1 29385 |
. . . . . . . 8
β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β π β (WWalksβπΊ))) |
4 | 3 | com12 32 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β (πΊ β UPGraph β π β (WWalksβπΊ))) |
5 | 4 | ad2antrl 725 |
. . . . . 6
β’
(((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β (πΊ β UPGraph β π β (WWalksβπΊ))) |
6 | 5 | imp 406 |
. . . . 5
β’
((((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β§ πΊ β UPGraph) β π β (WWalksβπΊ)) |
7 | | wlklenvp1 29139 |
. . . . . . . 8
β’ (πΉ(WalksβπΊ)π β (β―βπ) = ((β―βπΉ) + 1)) |
8 | 7 | ad2antrl 725 |
. . . . . . 7
β’
(((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β (β―βπ) = ((β―βπΉ) + 1)) |
9 | | oveq1 7419 |
. . . . . . . . 9
β’
((β―βπΉ) =
π β
((β―βπΉ) + 1) =
(π + 1)) |
10 | 9 | adantl 481 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = π) β ((β―βπΉ) + 1) = (π + 1)) |
11 | 10 | adantl 481 |
. . . . . . 7
β’
(((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β ((β―βπΉ) + 1) = (π + 1)) |
12 | 8, 11 | eqtrd 2771 |
. . . . . 6
β’
(((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β (β―βπ) = (π + 1)) |
13 | 12 | adantr 480 |
. . . . 5
β’
((((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β§ πΊ β UPGraph) β (β―βπ) = (π + 1)) |
14 | | eleq1 2820 |
. . . . . . . . 9
β’
((β―βπΉ) =
π β
((β―βπΉ) β
β0 β π β
β0)) |
15 | | iswwlksn 29356 |
. . . . . . . . 9
β’ (π β β0
β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) |
16 | 14, 15 | syl6bi 252 |
. . . . . . . 8
β’
((β―βπΉ) =
π β
((β―βπΉ) β
β0 β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1))))) |
17 | 16 | adantl 481 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = π) β ((β―βπΉ) β β0 β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1))))) |
18 | 17 | impcom 407 |
. . . . . 6
β’
(((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) |
19 | 18 | adantr 480 |
. . . . 5
β’
((((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β§ πΊ β UPGraph) β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) |
20 | 6, 13, 19 | mpbir2and 710 |
. . . 4
β’
((((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β§ πΊ β UPGraph) β π β (π WWalksN πΊ)) |
21 | 20 | ex 412 |
. . 3
β’
(((β―βπΉ)
β β0 β§ (πΉ(WalksβπΊ)π β§ (β―βπΉ) = π)) β (πΊ β UPGraph β π β (π WWalksN πΊ))) |
22 | 2, 21 | mpancom 685 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = π) β (πΊ β UPGraph β π β (π WWalksN πΊ))) |
23 | 22 | com12 32 |
1
β’ (πΊ β UPGraph β ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = π) β π β (π WWalksN πΊ))) |