![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlklnwwlkln1 | Structured version Visualization version GIF version |
Description: The sequence of vertices in a walk of length 𝑁 is a walk as word of length 𝑁 in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
Ref | Expression |
---|---|
wlklnwwlkln1 | ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkcl 29647 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (♯‘𝐹) ∈ ℕ0) |
3 | wlkiswwlks1 29896 | . . . . . . . 8 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ (WWalks‘𝐺))) | |
4 | 3 | com12 32 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺))) |
5 | 4 | ad2antrl 728 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺))) |
6 | 5 | imp 406 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (WWalks‘𝐺)) |
7 | wlklenvp1 29650 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
8 | 7 | ad2antrl 728 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
9 | oveq1 7437 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) + 1) = (𝑁 + 1)) | |
10 | 9 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
12 | 8, 11 | eqtrd 2774 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = (𝑁 + 1)) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (♯‘𝑃) = (𝑁 + 1)) |
14 | eleq1 2826 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
15 | iswwlksn 29867 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) | |
16 | 14, 15 | biimtrdi 253 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))) |
17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))) |
18 | 17 | impcom 407 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) |
19 | 18 | adantr 480 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) |
20 | 6, 13, 19 | mpbir2and 713 | . . . 4 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (𝑁 WWalksN 𝐺)) |
21 | 20 | ex 412 | . . 3 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
22 | 2, 21 | mpancom 688 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
23 | 22 | com12 32 | 1 ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 1c1 11153 + caddc 11155 ℕ0cn0 12523 ♯chash 14365 UPGraphcupgr 29111 Walkscwlks 29628 WWalkscwwlks 29854 WWalksN cwwlksn 29855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-xnn0 12597 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-hash 14366 df-word 14549 df-edg 29079 df-uhgr 29089 df-upgr 29113 df-wlks 29631 df-wwlks 29859 df-wwlksn 29860 |
This theorem is referenced by: wlklnwwlkn 29913 wlklnwwlknupgr 29915 |
Copyright terms: Public domain | W3C validator |