Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlklnwwlkln1 | Structured version Visualization version GIF version |
Description: The sequence of vertices in a walk of length 𝑁 is a walk as word of length 𝑁 in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.) |
Ref | Expression |
---|---|
wlklnwwlkln1 | ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkcl 27982 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (♯‘𝐹) ∈ ℕ0) |
3 | wlkiswwlks1 28232 | . . . . . . . 8 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ (WWalks‘𝐺))) | |
4 | 3 | com12 32 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺))) |
5 | 4 | ad2antrl 725 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺))) |
6 | 5 | imp 407 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (WWalks‘𝐺)) |
7 | wlklenvp1 27985 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
8 | 7 | ad2antrl 725 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
9 | oveq1 7282 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) + 1) = (𝑁 + 1)) | |
10 | 9 | adantl 482 | . . . . . . . 8 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → ((♯‘𝐹) + 1) = (𝑁 + 1)) |
12 | 8, 11 | eqtrd 2778 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = (𝑁 + 1)) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (♯‘𝑃) = (𝑁 + 1)) |
14 | eleq1 2826 | . . . . . . . . 9 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
15 | iswwlksn 28203 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) | |
16 | 14, 15 | syl6bi 252 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))) |
17 | 16 | adantl 482 | . . . . . . 7 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))) |
18 | 17 | impcom 408 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) |
19 | 18 | adantr 481 | . . . . 5 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))) |
20 | 6, 13, 19 | mpbir2and 710 | . . . 4 ⊢ ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (𝑁 WWalksN 𝐺)) |
21 | 20 | ex 413 | . . 3 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
22 | 2, 21 | mpancom 685 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
23 | 22 | com12 32 | 1 ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 ℕ0cn0 12233 ♯chash 14044 UPGraphcupgr 27450 Walkscwlks 27963 WWalkscwwlks 28190 WWalksN cwwlksn 28191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-edg 27418 df-uhgr 27428 df-upgr 27452 df-wlks 27966 df-wwlks 28195 df-wwlksn 28196 |
This theorem is referenced by: wlklnwwlkn 28249 wlklnwwlknupgr 28251 |
Copyright terms: Public domain | W3C validator |