MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln1 Structured version   Visualization version   GIF version

Theorem wlklnwwlkln1 28522
Description: The sequence of vertices in a walk of length 𝑁 is a walk as word of length 𝑁 in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wlklnwwlkln1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wlklnwwlkln1
StepHypRef Expression
1 wlkcl 28272 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
21adantr 481 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (♯‘𝐹) ∈ ℕ0)
3 wlkiswwlks1 28521 . . . . . . . 8 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃𝑃 ∈ (WWalks‘𝐺)))
43com12 32 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺)))
54ad2antrl 725 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (WWalks‘𝐺)))
65imp 407 . . . . 5 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (WWalks‘𝐺))
7 wlklenvp1 28275 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
87ad2antrl 725 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = ((♯‘𝐹) + 1))
9 oveq1 7345 . . . . . . . . 9 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) + 1) = (𝑁 + 1))
109adantl 482 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) + 1) = (𝑁 + 1))
1110adantl 482 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → ((♯‘𝐹) + 1) = (𝑁 + 1))
128, 11eqtrd 2776 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (♯‘𝑃) = (𝑁 + 1))
1312adantr 481 . . . . 5 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (♯‘𝑃) = (𝑁 + 1))
14 eleq1 2824 . . . . . . . . 9 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
15 iswwlksn 28492 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
1614, 15syl6bi 252 . . . . . . . 8 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))))
1716adantl 482 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → ((♯‘𝐹) ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1)))))
1817impcom 408 . . . . . 6 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
1918adantr 481 . . . . 5 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (♯‘𝑃) = (𝑁 + 1))))
206, 13, 19mpbir2and 710 . . . 4 ((((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) ∧ 𝐺 ∈ UPGraph) → 𝑃 ∈ (𝑁 WWalksN 𝐺))
2120ex 413 . . 3 (((♯‘𝐹) ∈ ℕ0 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁)) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺)))
222, 21mpancom 685 . 2 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → (𝐺 ∈ UPGraph → 𝑃 ∈ (𝑁 WWalksN 𝐺)))
2322com12 32 1 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 𝑁) → 𝑃 ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5093  cfv 6480  (class class class)co 7338  1c1 10974   + caddc 10976  0cn0 12335  chash 14146  UPGraphcupgr 27740  Walkscwlks 28253  WWalkscwwlks 28479   WWalksN cwwlksn 28480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-2o 8369  df-oadd 8372  df-er 8570  df-map 8689  df-pm 8690  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-dju 9759  df-card 9797  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-n0 12336  df-xnn0 12408  df-z 12422  df-uz 12685  df-fz 13342  df-fzo 13485  df-hash 14147  df-word 14319  df-edg 27708  df-uhgr 27718  df-upgr 27742  df-wlks 28256  df-wwlks 28484  df-wwlksn 28485
This theorem is referenced by:  wlklnwwlkn  28538  wlklnwwlknupgr  28540
  Copyright terms: Public domain W3C validator