| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldillaut | Structured version Visualization version GIF version | ||
| Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ldillaut.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldillaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
| ldillaut.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ldillaut | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | ldillaut.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | ldillaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
| 5 | ldillaut.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isldil 40149 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹‘𝑥) = 𝑥)))) |
| 7 | 6 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 lecple 17163 LHypclh 40023 LAutclaut 40024 LDilcldil 40139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ldil 40143 |
| This theorem is referenced by: ldil1o 40151 ldilcnv 40154 ldilco 40155 ltrnlaut 40162 |
| Copyright terms: Public domain | W3C validator |