Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldillaut Structured version   Visualization version   GIF version

Theorem ldillaut 39438
Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ldillaut.h 𝐻 = (LHypβ€˜πΎ)
ldillaut.i 𝐼 = (LAutβ€˜πΎ)
ldillaut.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ldillaut (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ 𝐹 ∈ 𝐼)

Proof of Theorem ldillaut
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2724 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
3 ldillaut.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 ldillaut.i . . 3 𝐼 = (LAutβ€˜πΎ)
5 ldillaut.d . . 3 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5isldil 39437 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯))))
76simprbda 498 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ 𝐹 ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053   class class class wbr 5138  β€˜cfv 6533  Basecbs 17140  lecple 17200  LHypclh 39311  LAutclaut 39312  LDilcldil 39427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ldil 39431
This theorem is referenced by:  ldil1o  39439  ldilcnv  39442  ldilco  39443  ltrnlaut  39450
  Copyright terms: Public domain W3C validator