Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldillaut | Structured version Visualization version GIF version |
Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ldillaut.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldillaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
ldillaut.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ldillaut | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2736 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ldillaut.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ldillaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
5 | ldillaut.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | isldil 38324 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹‘𝑥) = 𝑥)))) |
7 | 6 | simprbda 500 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 class class class wbr 5081 ‘cfv 6458 Basecbs 16961 lecple 17018 LHypclh 38198 LAutclaut 38199 LDilcldil 38314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ldil 38318 |
This theorem is referenced by: ldil1o 38326 ldilcnv 38329 ldilco 38330 ltrnlaut 38337 |
Copyright terms: Public domain | W3C validator |