![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldillaut | Structured version Visualization version GIF version |
Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ldillaut.h | β’ π» = (LHypβπΎ) |
ldillaut.i | β’ πΌ = (LAutβπΎ) |
ldillaut.d | β’ π· = ((LDilβπΎ)βπ) |
Ref | Expression |
---|---|
ldillaut | β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | eqid 2724 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | ldillaut.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | ldillaut.i | . . 3 β’ πΌ = (LAutβπΎ) | |
5 | ldillaut.d | . . 3 β’ π· = ((LDilβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | isldil 39437 | . 2 β’ ((πΎ β π β§ π β π») β (πΉ β π· β (πΉ β πΌ β§ βπ₯ β (BaseβπΎ)(π₯(leβπΎ)π β (πΉβπ₯) = π₯)))) |
7 | 6 | simprbda 498 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 class class class wbr 5138 βcfv 6533 Basecbs 17140 lecple 17200 LHypclh 39311 LAutclaut 39312 LDilcldil 39427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ldil 39431 |
This theorem is referenced by: ldil1o 39439 ldilcnv 39442 ldilco 39443 ltrnlaut 39450 |
Copyright terms: Public domain | W3C validator |