![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldillaut | Structured version Visualization version GIF version |
Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ldillaut.h | β’ π» = (LHypβπΎ) |
ldillaut.i | β’ πΌ = (LAutβπΎ) |
ldillaut.d | β’ π· = ((LDilβπΎ)βπ) |
Ref | Expression |
---|---|
ldillaut | β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | ldillaut.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | ldillaut.i | . . 3 β’ πΌ = (LAutβπΎ) | |
5 | ldillaut.d | . . 3 β’ π· = ((LDilβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | isldil 38969 | . 2 β’ ((πΎ β π β§ π β π») β (πΉ β π· β (πΉ β πΌ β§ βπ₯ β (BaseβπΎ)(π₯(leβπΎ)π β (πΉβπ₯) = π₯)))) |
7 | 6 | simprbda 499 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 LHypclh 38843 LAutclaut 38844 LDilcldil 38959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ldil 38963 |
This theorem is referenced by: ldil1o 38971 ldilcnv 38974 ldilco 38975 ltrnlaut 38982 |
Copyright terms: Public domain | W3C validator |