Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Visualization version   GIF version

Theorem ldilco 39292
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h 𝐻 = (LHypβ€˜πΎ)
ldilco.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ldilco (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ (𝐹 ∘ 𝐺) ∈ 𝐷)

Proof of Theorem ldilco
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 simp1l 1195 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ 𝐾 ∈ 𝑉)
2 ldilco.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
3 eqid 2730 . . . . 5 (LAutβ€˜πΎ) = (LAutβ€˜πΎ)
4 ldilco.d . . . . 5 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
52, 3, 4ldillaut 39287 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ 𝐹 ∈ (LAutβ€˜πΎ))
653adant3 1130 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ 𝐹 ∈ (LAutβ€˜πΎ))
72, 3, 4ldillaut 39287 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝐷) β†’ 𝐺 ∈ (LAutβ€˜πΎ))
873adant2 1129 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ 𝐺 ∈ (LAutβ€˜πΎ))
93lautco 39273 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAutβ€˜πΎ) ∧ 𝐺 ∈ (LAutβ€˜πΎ)) β†’ (𝐹 ∘ 𝐺) ∈ (LAutβ€˜πΎ))
101, 6, 8, 9syl3anc 1369 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ (𝐹 ∘ 𝐺) ∈ (LAutβ€˜πΎ))
11 simp11 1201 . . . . . . . 8 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻))
12 simp13 1203 . . . . . . . 8 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ 𝐺 ∈ 𝐷)
13 eqid 2730 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1413, 2, 4ldil1o 39288 . . . . . . . 8 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝐷) β†’ 𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
1511, 12, 14syl2anc 582 . . . . . . 7 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ 𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
16 f1of 6834 . . . . . . 7 (𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) β†’ 𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ))
1715, 16syl 17 . . . . . 6 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ 𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ))
18 simp2 1135 . . . . . 6 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ π‘₯ ∈ (Baseβ€˜πΎ))
19 fvco3 6991 . . . . . 6 ((𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ) ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = (πΉβ€˜(πΊβ€˜π‘₯)))
2017, 18, 19syl2anc 582 . . . . 5 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = (πΉβ€˜(πΊβ€˜π‘₯)))
21 simp3 1136 . . . . . . 7 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ π‘₯(leβ€˜πΎ)π‘Š)
22 eqid 2730 . . . . . . . 8 (leβ€˜πΎ) = (leβ€˜πΎ)
2313, 22, 2, 4ldilval 39289 . . . . . . 7 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝐷 ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)) β†’ (πΊβ€˜π‘₯) = π‘₯)
2411, 12, 18, 21, 23syl112anc 1372 . . . . . 6 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (πΊβ€˜π‘₯) = π‘₯)
2524fveq2d 6896 . . . . 5 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (πΉβ€˜(πΊβ€˜π‘₯)) = (πΉβ€˜π‘₯))
26 simp12 1202 . . . . . 6 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ 𝐹 ∈ 𝐷)
2713, 22, 2, 4ldilval 39289 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)) β†’ (πΉβ€˜π‘₯) = π‘₯)
2811, 26, 18, 21, 27syl112anc 1372 . . . . 5 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (πΉβ€˜π‘₯) = π‘₯)
2920, 25, 283eqtrd 2774 . . . 4 ((((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = π‘₯)
30293exp 1117 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ (π‘₯ ∈ (Baseβ€˜πΎ) β†’ (π‘₯(leβ€˜πΎ)π‘Š β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = π‘₯)))
3130ralrimiv 3143 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = π‘₯))
3213, 22, 2, 3, 4isldil 39286 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ ((𝐹 ∘ 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘ 𝐺) ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = π‘₯))))
33323ad2ant1 1131 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ ((𝐹 ∘ 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘ 𝐺) ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = π‘₯))))
3410, 31, 33mpbir2and 709 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) β†’ (𝐹 ∘ 𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   class class class wbr 5149   ∘ ccom 5681  βŸΆwf 6540  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  Basecbs 17150  lecple 17210  LHypclh 39160  LAutclaut 39161  LDilcldil 39276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-laut 39165  df-ldil 39280
This theorem is referenced by:  ltrnco  39895
  Copyright terms: Public domain W3C validator