Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Visualization version   GIF version

Theorem ldilco 40119
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h 𝐻 = (LHyp‘𝐾)
ldilco.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilco (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)

Proof of Theorem ldilco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐾𝑉)
2 ldilco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2736 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilco.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 40114 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1132 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐹 ∈ (LAut‘𝐾))
72, 3, 4ldillaut 40114 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
873adant2 1131 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
93lautco 40100 . . 3 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾) ∧ 𝐺 ∈ (LAut‘𝐾)) → (𝐹𝐺) ∈ (LAut‘𝐾))
101, 6, 8, 9syl3anc 1372 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ (LAut‘𝐾))
11 simp11 1203 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐾𝑉𝑊𝐻))
12 simp13 1205 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺𝐷)
13 eqid 2736 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 2, 4ldil1o 40115 . . . . . . . 8 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1511, 12, 14syl2anc 584 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6847 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
18 simp2 1137 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
19 fvco3 7007 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2017, 18, 19syl2anc 584 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
21 simp3 1138 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥(le‘𝐾)𝑊)
22 eqid 2736 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2313, 22, 2, 4ldilval 40116 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐺𝑥) = 𝑥)
2411, 12, 18, 21, 23syl112anc 1375 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐺𝑥) = 𝑥)
2524fveq2d 6909 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐺𝑥)) = (𝐹𝑥))
26 simp12 1204 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹𝐷)
2713, 22, 2, 4ldilval 40116 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
2811, 26, 18, 21, 27syl112anc 1375 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
2920, 25, 283eqtrd 2780 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = 𝑥)
30293exp 1119 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥)))
3130ralrimiv 3144 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))
3213, 22, 2, 3, 4isldil 40113 . . 3 ((𝐾𝑉𝑊𝐻) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
33323ad2ant1 1133 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
3410, 31, 33mpbir2and 713 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060   class class class wbr 5142  ccom 5688  wf 6556  1-1-ontowf1o 6559  cfv 6560  Basecbs 17248  lecple 17305  LHypclh 39987  LAutclaut 39988  LDilcldil 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-laut 39992  df-ldil 40107
This theorem is referenced by:  ltrnco  40722
  Copyright terms: Public domain W3C validator