Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Visualization version   GIF version

Theorem ldilco 37816
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h 𝐻 = (LHyp‘𝐾)
ldilco.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilco (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)

Proof of Theorem ldilco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1199 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐾𝑉)
2 ldilco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2736 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilco.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 37811 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1134 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐹 ∈ (LAut‘𝐾))
72, 3, 4ldillaut 37811 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
873adant2 1133 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
93lautco 37797 . . 3 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾) ∧ 𝐺 ∈ (LAut‘𝐾)) → (𝐹𝐺) ∈ (LAut‘𝐾))
101, 6, 8, 9syl3anc 1373 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ (LAut‘𝐾))
11 simp11 1205 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐾𝑉𝑊𝐻))
12 simp13 1207 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺𝐷)
13 eqid 2736 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 2, 4ldil1o 37812 . . . . . . . 8 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1511, 12, 14syl2anc 587 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6639 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
18 simp2 1139 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
19 fvco3 6788 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2017, 18, 19syl2anc 587 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
21 simp3 1140 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥(le‘𝐾)𝑊)
22 eqid 2736 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2313, 22, 2, 4ldilval 37813 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐺𝑥) = 𝑥)
2411, 12, 18, 21, 23syl112anc 1376 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐺𝑥) = 𝑥)
2524fveq2d 6699 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐺𝑥)) = (𝐹𝑥))
26 simp12 1206 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹𝐷)
2713, 22, 2, 4ldilval 37813 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
2811, 26, 18, 21, 27syl112anc 1376 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
2920, 25, 283eqtrd 2775 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = 𝑥)
30293exp 1121 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥)))
3130ralrimiv 3094 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))
3213, 22, 2, 3, 4isldil 37810 . . 3 ((𝐾𝑉𝑊𝐻) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
33323ad2ant1 1135 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
3410, 31, 33mpbir2and 713 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051   class class class wbr 5039  ccom 5540  wf 6354  1-1-ontowf1o 6357  cfv 6358  Basecbs 16666  lecple 16756  LHypclh 37684  LAutclaut 37685  LDilcldil 37800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-map 8488  df-laut 37689  df-ldil 37804
This theorem is referenced by:  ltrnco  38419
  Copyright terms: Public domain W3C validator