Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Visualization version   GIF version

Theorem ldilco 39716
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h 𝐻 = (LHyp‘𝐾)
ldilco.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilco (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)

Proof of Theorem ldilco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1194 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐾𝑉)
2 ldilco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2725 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilco.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 39711 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1129 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐹 ∈ (LAut‘𝐾))
72, 3, 4ldillaut 39711 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
873adant2 1128 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
93lautco 39697 . . 3 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾) ∧ 𝐺 ∈ (LAut‘𝐾)) → (𝐹𝐺) ∈ (LAut‘𝐾))
101, 6, 8, 9syl3anc 1368 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ (LAut‘𝐾))
11 simp11 1200 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐾𝑉𝑊𝐻))
12 simp13 1202 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺𝐷)
13 eqid 2725 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 2, 4ldil1o 39712 . . . . . . . 8 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1511, 12, 14syl2anc 582 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6838 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
18 simp2 1134 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
19 fvco3 6996 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2017, 18, 19syl2anc 582 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
21 simp3 1135 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥(le‘𝐾)𝑊)
22 eqid 2725 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2313, 22, 2, 4ldilval 39713 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐺𝑥) = 𝑥)
2411, 12, 18, 21, 23syl112anc 1371 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐺𝑥) = 𝑥)
2524fveq2d 6900 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐺𝑥)) = (𝐹𝑥))
26 simp12 1201 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹𝐷)
2713, 22, 2, 4ldilval 39713 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
2811, 26, 18, 21, 27syl112anc 1371 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
2920, 25, 283eqtrd 2769 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = 𝑥)
30293exp 1116 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥)))
3130ralrimiv 3134 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))
3213, 22, 2, 3, 4isldil 39710 . . 3 ((𝐾𝑉𝑊𝐻) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
33323ad2ant1 1130 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
3410, 31, 33mpbir2and 711 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050   class class class wbr 5149  ccom 5682  wf 6545  1-1-ontowf1o 6548  cfv 6549  Basecbs 17183  lecple 17243  LHypclh 39584  LAutclaut 39585  LDilcldil 39700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-laut 39589  df-ldil 39704
This theorem is referenced by:  ltrnco  40319
  Copyright terms: Public domain W3C validator