| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1198 |
. . 3
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐾 ∈ 𝑉) |
| 2 | | ldilco.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(LAut‘𝐾) =
(LAut‘𝐾) |
| 4 | | ldilco.d |
. . . . 5
⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| 5 | 2, 3, 4 | ldillaut 40135 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | 5 | 3adant3 1132 |
. . 3
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) |
| 7 | 2, 3, 4 | ldillaut 40135 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝐷) → 𝐺 ∈ (LAut‘𝐾)) |
| 8 | 7 | 3adant2 1131 |
. . 3
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺 ∈ (LAut‘𝐾)) |
| 9 | 3 | lautco 40121 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝐺 ∈ (LAut‘𝐾)) → (𝐹 ∘ 𝐺) ∈ (LAut‘𝐾)) |
| 10 | 1, 6, 8, 9 | syl3anc 1373 |
. 2
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘ 𝐺) ∈ (LAut‘𝐾)) |
| 11 | | simp11 1204 |
. . . . . . . 8
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) |
| 12 | | simp13 1206 |
. . . . . . . 8
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺 ∈ 𝐷) |
| 13 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 14 | 13, 2, 4 | ldil1o 40136 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝐷) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 15 | 11, 12, 14 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 16 | | f1of 6823 |
. . . . . . 7
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
| 17 | 15, 16 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
| 18 | | simp2 1137 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾)) |
| 19 | | fvco3 6983 |
. . . . . 6
⊢ ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 21 | | simp3 1138 |
. . . . . . 7
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥(le‘𝐾)𝑊) |
| 22 | | eqid 2736 |
. . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) |
| 23 | 13, 22, 2, 4 | ldilval 40137 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐺‘𝑥) = 𝑥) |
| 24 | 11, 12, 18, 21, 23 | syl112anc 1376 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐺‘𝑥) = 𝑥) |
| 25 | 24 | fveq2d 6885 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐺‘𝑥)) = (𝐹‘𝑥)) |
| 26 | | simp12 1205 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹 ∈ 𝐷) |
| 27 | 13, 22, 2, 4 | ldilval 40137 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) |
| 28 | 11, 26, 18, 21, 27 | syl112anc 1376 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘𝑥) = 𝑥) |
| 29 | 20, 25, 28 | 3eqtrd 2775 |
. . . 4
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹 ∘ 𝐺)‘𝑥) = 𝑥) |
| 30 | 29 | 3exp 1119 |
. . 3
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → ((𝐹 ∘ 𝐺)‘𝑥) = 𝑥))) |
| 31 | 30 | ralrimiv 3132 |
. 2
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹 ∘ 𝐺)‘𝑥) = 𝑥)) |
| 32 | 13, 22, 2, 3, 4 | isldil 40134 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → ((𝐹 ∘ 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘ 𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹 ∘ 𝐺)‘𝑥) = 𝑥)))) |
| 33 | 32 | 3ad2ant1 1133 |
. 2
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘ 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘ 𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹 ∘ 𝐺)‘𝑥) = 𝑥)))) |
| 34 | 10, 31, 33 | mpbir2and 713 |
1
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘ 𝐺) ∈ 𝐷) |