Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Visualization version   GIF version

Theorem ldilco 37405
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h 𝐻 = (LHyp‘𝐾)
ldilco.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilco (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)

Proof of Theorem ldilco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1194 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐾𝑉)
2 ldilco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2801 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilco.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 37400 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1129 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐹 ∈ (LAut‘𝐾))
72, 3, 4ldillaut 37400 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
873adant2 1128 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
93lautco 37386 . . 3 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾) ∧ 𝐺 ∈ (LAut‘𝐾)) → (𝐹𝐺) ∈ (LAut‘𝐾))
101, 6, 8, 9syl3anc 1368 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ (LAut‘𝐾))
11 simp11 1200 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐾𝑉𝑊𝐻))
12 simp13 1202 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺𝐷)
13 eqid 2801 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 2, 4ldil1o 37401 . . . . . . . 8 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1511, 12, 14syl2anc 587 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6594 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
18 simp2 1134 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
19 fvco3 6741 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2017, 18, 19syl2anc 587 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
21 simp3 1135 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥(le‘𝐾)𝑊)
22 eqid 2801 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2313, 22, 2, 4ldilval 37402 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐺𝑥) = 𝑥)
2411, 12, 18, 21, 23syl112anc 1371 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐺𝑥) = 𝑥)
2524fveq2d 6653 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐺𝑥)) = (𝐹𝑥))
26 simp12 1201 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹𝐷)
2713, 22, 2, 4ldilval 37402 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
2811, 26, 18, 21, 27syl112anc 1371 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
2920, 25, 283eqtrd 2840 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = 𝑥)
30293exp 1116 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥)))
3130ralrimiv 3151 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))
3213, 22, 2, 3, 4isldil 37399 . . 3 ((𝐾𝑉𝑊𝐻) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
33323ad2ant1 1130 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
3410, 31, 33mpbir2and 712 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109   class class class wbr 5033  ccom 5527  wf 6324  1-1-ontowf1o 6327  cfv 6328  Basecbs 16478  lecple 16567  LHypclh 37273  LAutclaut 37274  LDilcldil 37389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-map 8395  df-laut 37278  df-ldil 37393
This theorem is referenced by:  ltrnco  38008
  Copyright terms: Public domain W3C validator