Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldil1o Structured version   Visualization version   GIF version

Theorem ldil1o 38053
Description: A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldil1o.b 𝐵 = (Base‘𝐾)
ldil1o.h 𝐻 = (LHyp‘𝐾)
ldil1o.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldil1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ldil1o
StepHypRef Expression
1 simpll 763 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐾𝑉)
2 ldil1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ldil1o.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 38052 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
6 ldil1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 38026 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 583 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  LHypclh 37925  LAutclaut 37926  LDilcldil 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-laut 37930  df-ldil 38045
This theorem is referenced by:  ldilcnv  38056  ldilco  38057
  Copyright terms: Public domain W3C validator