| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldil1o | Structured version Visualization version GIF version | ||
| Description: A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.) |
| Ref | Expression |
|---|---|
| ldil1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldil1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldil1o.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ldil1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐾 ∈ 𝑉) | |
| 2 | ldil1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2735 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ldil1o.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ldillaut 40076 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | ldil1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 6, 3 | laut1o 40050 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 –1-1-onto→wf1o 6529 ‘cfv 6530 Basecbs 17226 LHypclh 39949 LAutclaut 39950 LDilcldil 40065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-laut 39954 df-ldil 40069 |
| This theorem is referenced by: ldilcnv 40080 ldilco 40081 |
| Copyright terms: Public domain | W3C validator |