| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldil1o | Structured version Visualization version GIF version | ||
| Description: A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.) |
| Ref | Expression |
|---|---|
| ldil1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldil1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldil1o.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ldil1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐾 ∈ 𝑉) | |
| 2 | ldil1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ldil1o.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ldillaut 40078 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | ldil1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 6, 3 | laut1o 40052 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1-onto→wf1o 6498 ‘cfv 6499 Basecbs 17155 LHypclh 39951 LAutclaut 39952 LDilcldil 40067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-laut 39956 df-ldil 40071 |
| This theorem is referenced by: ldilcnv 40082 ldilco 40083 |
| Copyright terms: Public domain | W3C validator |