Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldil1o Structured version   Visualization version   GIF version

Theorem ldil1o 40069
Description: A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldil1o.b 𝐵 = (Base‘𝐾)
ldil1o.h 𝐻 = (LHyp‘𝐾)
ldil1o.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldil1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ldil1o
StepHypRef Expression
1 simpll 766 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐾𝑉)
2 ldil1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2740 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ldil1o.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 40068 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
6 ldil1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 40042 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 583 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  LHypclh 39941  LAutclaut 39942  LDilcldil 40057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-laut 39946  df-ldil 40061
This theorem is referenced by:  ldilcnv  40072  ldilco  40073
  Copyright terms: Public domain W3C validator