Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   GIF version

Theorem ldilcnv 38108
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h 𝐻 = (LHyp‘𝐾)
ldilcnv.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilcnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)

Proof of Theorem ldilcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐾 ∈ HL)
2 ldilcnv.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2739 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilcnv.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 38104 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
63lautcnv 38083 . . 3 ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹 ∈ (LAut‘𝐾))
71, 5, 6syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
8 eqid 2739 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2739 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
108, 9, 2, 4ldilval 38106 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
11103expa 1116 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
12113impb 1113 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
1312fveq2d 6772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
148, 2, 4ldil1o 38105 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15143ad2ant1 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 simp2 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
17 f1ocnvfv1 7142 . . . . . 6 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
1815, 16, 17syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = 𝑥)
1913, 18eqtr3d 2781 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
20193exp 1117 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥)))
2120ralrimiv 3108 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))
228, 9, 2, 3, 4isldil 38103 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
2322adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
247, 21, 23mpbir2and 709 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065   class class class wbr 5078  ccnv 5587  1-1-ontowf1o 6429  cfv 6430  Basecbs 16893  lecple 16950  HLchlt 37343  LHypclh 37977  LAutclaut 37978  LDilcldil 38093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-laut 37982  df-ldil 38097
This theorem is referenced by:  ltrncnv  38139
  Copyright terms: Public domain W3C validator