Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   GIF version

Theorem ldilcnv 38129
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h 𝐻 = (LHyp‘𝐾)
ldilcnv.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilcnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)

Proof of Theorem ldilcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐾 ∈ HL)
2 ldilcnv.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilcnv.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 38125 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
63lautcnv 38104 . . 3 ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹 ∈ (LAut‘𝐾))
71, 5, 6syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
8 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2738 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
108, 9, 2, 4ldilval 38127 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
11103expa 1117 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
12113impb 1114 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
1312fveq2d 6778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
148, 2, 4ldil1o 38126 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15143ad2ant1 1132 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 simp2 1136 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
17 f1ocnvfv1 7148 . . . . . 6 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
1815, 16, 17syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = 𝑥)
1913, 18eqtr3d 2780 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
20193exp 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥)))
2120ralrimiv 3102 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))
228, 9, 2, 3, 4isldil 38124 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
2322adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
247, 21, 23mpbir2and 710 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  ccnv 5588  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  lecple 16969  HLchlt 37364  LHypclh 37998  LAutclaut 37999  LDilcldil 38114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-laut 38003  df-ldil 38118
This theorem is referenced by:  ltrncnv  38160
  Copyright terms: Public domain W3C validator