Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐾 ∈ HL) |
2 | | ldilcnv.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2738 |
. . . 4
⊢
(LAut‘𝐾) =
(LAut‘𝐾) |
4 | | ldilcnv.d |
. . . 4
⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
5 | 2, 3, 4 | ldillaut 38125 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) |
6 | 3 | lautcnv 38104 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → ◡𝐹 ∈ (LAut‘𝐾)) |
7 | 1, 5, 6 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ (LAut‘𝐾)) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢
(le‘𝐾) =
(le‘𝐾) |
10 | 8, 9, 2, 4 | ldilval 38127 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) |
11 | 10 | 3expa 1117 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) |
12 | 11 | 3impb 1114 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘𝑥) = 𝑥) |
13 | 12 | fveq2d 6778 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘(𝐹‘𝑥)) = (◡𝐹‘𝑥)) |
14 | 8, 2, 4 | ldil1o 38126 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
15 | 14 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
16 | | simp2 1136 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾)) |
17 | | f1ocnvfv1 7148 |
. . . . . 6
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
18 | 15, 16, 17 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
19 | 13, 18 | eqtr3d 2780 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘𝑥) = 𝑥) |
20 | 19 | 3exp 1118 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥))) |
21 | 20 | ralrimiv 3102 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)) |
22 | 8, 9, 2, 3, 4 | isldil 38124 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐹 ∈ 𝐷 ↔ (◡𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)))) |
23 | 22 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → (◡𝐹 ∈ 𝐷 ↔ (◡𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)))) |
24 | 7, 21, 23 | mpbir2and 710 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ 𝐷) |