| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐾 ∈ HL) |
| 2 | | ldilcnv.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 3 | | eqid 2736 |
. . . 4
⊢
(LAut‘𝐾) =
(LAut‘𝐾) |
| 4 | | ldilcnv.d |
. . . 4
⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| 5 | 2, 3, 4 | ldillaut 40135 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | 3 | lautcnv 40114 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → ◡𝐹 ∈ (LAut‘𝐾)) |
| 7 | 1, 5, 6 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ (LAut‘𝐾)) |
| 8 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 9 | | eqid 2736 |
. . . . . . . . 9
⊢
(le‘𝐾) =
(le‘𝐾) |
| 10 | 8, 9, 2, 4 | ldilval 40137 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) |
| 11 | 10 | 3expa 1118 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) |
| 12 | 11 | 3impb 1114 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘𝑥) = 𝑥) |
| 13 | 12 | fveq2d 6885 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘(𝐹‘𝑥)) = (◡𝐹‘𝑥)) |
| 14 | 8, 2, 4 | ldil1o 40136 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 15 | 14 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 16 | | simp2 1137 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾)) |
| 17 | | f1ocnvfv1 7274 |
. . . . . 6
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 18 | 15, 16, 17 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 19 | 13, 18 | eqtr3d 2773 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘𝑥) = 𝑥) |
| 20 | 19 | 3exp 1119 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥))) |
| 21 | 20 | ralrimiv 3132 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)) |
| 22 | 8, 9, 2, 3, 4 | isldil 40134 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐹 ∈ 𝐷 ↔ (◡𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)))) |
| 23 | 22 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → (◡𝐹 ∈ 𝐷 ↔ (◡𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)))) |
| 24 | 7, 21, 23 | mpbir2and 713 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ 𝐷) |