| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 766 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐾 ∈ HL) | 
| 2 |  | ldilcnv.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 3 |  | eqid 2736 | . . . 4
⊢
(LAut‘𝐾) =
(LAut‘𝐾) | 
| 4 |  | ldilcnv.d | . . . 4
⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | 
| 5 | 2, 3, 4 | ldillaut 40114 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ (LAut‘𝐾)) | 
| 6 | 3 | lautcnv 40093 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → ◡𝐹 ∈ (LAut‘𝐾)) | 
| 7 | 1, 5, 6 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ (LAut‘𝐾)) | 
| 8 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 9 |  | eqid 2736 | . . . . . . . . 9
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 10 | 8, 9, 2, 4 | ldilval 40116 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) | 
| 11 | 10 | 3expa 1118 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹‘𝑥) = 𝑥) | 
| 12 | 11 | 3impb 1114 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘𝑥) = 𝑥) | 
| 13 | 12 | fveq2d 6909 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘(𝐹‘𝑥)) = (◡𝐹‘𝑥)) | 
| 14 | 8, 2, 4 | ldil1o 40115 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 15 | 14 | 3ad2ant1 1133 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 16 |  | simp2 1137 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾)) | 
| 17 |  | f1ocnvfv1 7297 | . . . . . 6
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) | 
| 18 | 15, 16, 17 | syl2anc 584 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) | 
| 19 | 13, 18 | eqtr3d 2778 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (◡𝐹‘𝑥) = 𝑥) | 
| 20 | 19 | 3exp 1119 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥))) | 
| 21 | 20 | ralrimiv 3144 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)) | 
| 22 | 8, 9, 2, 3, 4 | isldil 40113 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐹 ∈ 𝐷 ↔ (◡𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)))) | 
| 23 | 22 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → (◡𝐹 ∈ 𝐷 ↔ (◡𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (◡𝐹‘𝑥) = 𝑥)))) | 
| 24 | 7, 21, 23 | mpbir2and 713 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ 𝐷) |