Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   GIF version

Theorem ldilcnv 38651
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h 𝐻 = (LHyp‘𝐾)
ldilcnv.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilcnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)

Proof of Theorem ldilcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐾 ∈ HL)
2 ldilcnv.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2731 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilcnv.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 38647 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
63lautcnv 38626 . . 3 ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹 ∈ (LAut‘𝐾))
71, 5, 6syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
8 eqid 2731 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2731 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
108, 9, 2, 4ldilval 38649 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
11103expa 1118 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
12113impb 1115 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
1312fveq2d 6851 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
148, 2, 4ldil1o 38648 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15143ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
17 f1ocnvfv1 7227 . . . . . 6 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
1815, 16, 17syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = 𝑥)
1913, 18eqtr3d 2773 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
20193exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥)))
2120ralrimiv 3138 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))
228, 9, 2, 3, 4isldil 38646 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
2322adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
247, 21, 23mpbir2and 711 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060   class class class wbr 5110  ccnv 5637  1-1-ontowf1o 6500  cfv 6501  Basecbs 17094  lecple 17154  HLchlt 37885  LHypclh 38520  LAutclaut 38521  LDilcldil 38636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-map 8774  df-laut 38525  df-ldil 38640
This theorem is referenced by:  ltrncnv  38682
  Copyright terms: Public domain W3C validator