Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   GIF version

Theorem ldilcnv 40114
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h 𝐻 = (LHyp‘𝐾)
ldilcnv.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilcnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)

Proof of Theorem ldilcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐾 ∈ HL)
2 ldilcnv.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilcnv.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 40110 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
63lautcnv 40089 . . 3 ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹 ∈ (LAut‘𝐾))
71, 5, 6syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
8 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2729 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
108, 9, 2, 4ldilval 40112 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
11103expa 1118 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
12113impb 1114 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
1312fveq2d 6826 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
148, 2, 4ldil1o 40111 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15143ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
17 f1ocnvfv1 7213 . . . . . 6 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
1815, 16, 17syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = 𝑥)
1913, 18eqtr3d 2766 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
20193exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥)))
2120ralrimiv 3120 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))
228, 9, 2, 3, 4isldil 40109 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
2322adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
247, 21, 23mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  ccnv 5618  1-1-ontowf1o 6481  cfv 6482  Basecbs 17120  lecple 17168  HLchlt 39349  LHypclh 39983  LAutclaut 39984  LDilcldil 40099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-laut 39988  df-ldil 40103
This theorem is referenced by:  ltrncnv  40145
  Copyright terms: Public domain W3C validator