Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   GIF version

Theorem ldilcnv 39289
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h 𝐻 = (LHypβ€˜πΎ)
ldilcnv.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ldilcnv (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ ◑𝐹 ∈ 𝐷)

Proof of Theorem ldilcnv
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ 𝐾 ∈ HL)
2 ldilcnv.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 eqid 2730 . . . 4 (LAutβ€˜πΎ) = (LAutβ€˜πΎ)
4 ldilcnv.d . . . 4 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
52, 3, 4ldillaut 39285 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ 𝐹 ∈ (LAutβ€˜πΎ))
63lautcnv 39264 . . 3 ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAutβ€˜πΎ)) β†’ ◑𝐹 ∈ (LAutβ€˜πΎ))
71, 5, 6syl2anc 582 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ ◑𝐹 ∈ (LAutβ€˜πΎ))
8 eqid 2730 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
9 eqid 2730 . . . . . . . . 9 (leβ€˜πΎ) = (leβ€˜πΎ)
108, 9, 2, 4ldilval 39287 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)) β†’ (πΉβ€˜π‘₯) = π‘₯)
11103expa 1116 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)) β†’ (πΉβ€˜π‘₯) = π‘₯)
12113impb 1113 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (πΉβ€˜π‘₯) = π‘₯)
1312fveq2d 6894 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘₯)) = (β—‘πΉβ€˜π‘₯))
148, 2, 4ldil1o 39286 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
15143ad2ant1 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
16 simp2 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ π‘₯ ∈ (Baseβ€˜πΎ))
17 f1ocnvfv1 7276 . . . . . 6 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘₯)) = π‘₯)
1815, 16, 17syl2anc 582 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (β—‘πΉβ€˜(πΉβ€˜π‘₯)) = π‘₯)
1913, 18eqtr3d 2772 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) β†’ (β—‘πΉβ€˜π‘₯) = π‘₯)
20193exp 1117 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ (π‘₯ ∈ (Baseβ€˜πΎ) β†’ (π‘₯(leβ€˜πΎ)π‘Š β†’ (β—‘πΉβ€˜π‘₯) = π‘₯)))
2120ralrimiv 3143 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ (β—‘πΉβ€˜π‘₯) = π‘₯))
228, 9, 2, 3, 4isldil 39284 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (◑𝐹 ∈ 𝐷 ↔ (◑𝐹 ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ (β—‘πΉβ€˜π‘₯) = π‘₯))))
2322adantr 479 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ (◑𝐹 ∈ 𝐷 ↔ (◑𝐹 ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)π‘Š β†’ (β—‘πΉβ€˜π‘₯) = π‘₯))))
247, 21, 23mpbir2and 709 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) β†’ ◑𝐹 ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   class class class wbr 5147  β—‘ccnv 5674  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  Basecbs 17148  lecple 17208  HLchlt 38523  LHypclh 39158  LAutclaut 39159  LDilcldil 39274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-laut 39163  df-ldil 39278
This theorem is referenced by:  ltrncnv  39320
  Copyright terms: Public domain W3C validator