Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Visualization version   GIF version

Theorem ldilcnv 37411
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h 𝐻 = (LHyp‘𝐾)
ldilcnv.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilcnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)

Proof of Theorem ldilcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐾 ∈ HL)
2 ldilcnv.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2798 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilcnv.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 37407 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
63lautcnv 37386 . . 3 ((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹 ∈ (LAut‘𝐾))
71, 5, 6syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
8 eqid 2798 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2798 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
108, 9, 2, 4ldilval 37409 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
11103expa 1115 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
12113impb 1112 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
1312fveq2d 6649 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
148, 2, 4ldil1o 37408 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15143ad2ant1 1130 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 simp2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
17 f1ocnvfv1 7011 . . . . . 6 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
1815, 16, 17syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐹𝑥)) = 𝑥)
1913, 18eqtr3d 2835 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
20193exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥)))
2120ralrimiv 3148 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))
228, 9, 2, 3, 4isldil 37406 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
2322adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → (𝐹𝑥) = 𝑥))))
247, 21, 23mpbir2and 712 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝐷) → 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106   class class class wbr 5030  ccnv 5518  1-1-ontowf1o 6323  cfv 6324  Basecbs 16475  lecple 16564  HLchlt 36646  LHypclh 37280  LAutclaut 37281  LDilcldil 37396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-laut 37285  df-ldil 37400
This theorem is referenced by:  ltrncnv  37442
  Copyright terms: Public domain W3C validator