![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnlaut | Structured version Visualization version GIF version |
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnlaut.h | β’ π» = (LHypβπΎ) |
ltrnlaut.i | β’ πΌ = (LAutβπΎ) |
ltrnlaut.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrnlaut | β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnlaut.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | eqid 2733 | . . 3 β’ ((LDilβπΎ)βπ) = ((LDilβπΎ)βπ) | |
3 | ltrnlaut.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
4 | 1, 2, 3 | ltrnldil 38993 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β ((LDilβπΎ)βπ)) |
5 | ltrnlaut.i | . . 3 β’ πΌ = (LAutβπΎ) | |
6 | 1, 5, 2 | ldillaut 38982 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β ((LDilβπΎ)βπ)) β πΉ β πΌ) |
7 | 4, 6 | syldan 592 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 LHypclh 38855 LAutclaut 38856 LDilcldil 38971 LTrncltrn 38972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-ldil 38975 df-ltrn 38976 |
This theorem is referenced by: ltrn1o 38995 ltrncl 38996 ltrn11 38997 ltrnle 39000 ltrncnvleN 39001 ltrnm 39002 ltrnj 39003 ltrncvr 39004 ltrnid 39006 ltrneq2 39019 |
Copyright terms: Public domain | W3C validator |