Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnlaut Structured version   Visualization version   GIF version

Theorem ltrnlaut 36741
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnlaut.h 𝐻 = (LHyp‘𝐾)
ltrnlaut.i 𝐼 = (LAut‘𝐾)
ltrnlaut.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnlaut (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐼)

Proof of Theorem ltrnlaut
StepHypRef Expression
1 ltrnlaut.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2771 . . 3 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrnlaut.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 36740 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
5 ltrnlaut.i . . 3 𝐼 = (LAut‘𝐾)
61, 5, 2ldillaut 36729 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹𝐼)
74, 6syldan 583 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  cfv 6185  LHypclh 36602  LAutclaut 36603  LDilcldil 36718  LTrncltrn 36719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-ldil 36722  df-ltrn 36723
This theorem is referenced by:  ltrn1o  36742  ltrncl  36743  ltrn11  36744  ltrnle  36747  ltrncnvleN  36748  ltrnm  36749  ltrnj  36750  ltrncvr  36751  ltrnid  36753  ltrneq2  36766
  Copyright terms: Public domain W3C validator