| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnlaut | Structured version Visualization version GIF version | ||
| Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnlaut.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
| ltrnlaut.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnlaut | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrnlaut.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) | |
| 3 | ltrnlaut.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | ltrnldil 40116 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
| 5 | ltrnlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
| 6 | 1, 5, 2 | ldillaut 40105 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹 ∈ 𝐼) |
| 7 | 4, 6 | syldan 591 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 LHypclh 39978 LAutclaut 39979 LDilcldil 40094 LTrncltrn 40095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-ldil 40098 df-ltrn 40099 |
| This theorem is referenced by: ltrn1o 40118 ltrncl 40119 ltrn11 40120 ltrnle 40123 ltrncnvleN 40124 ltrnm 40125 ltrnj 40126 ltrncvr 40127 ltrnid 40129 ltrneq2 40142 |
| Copyright terms: Public domain | W3C validator |