Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnlaut Structured version   Visualization version   GIF version

Theorem ltrnlaut 38994
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnlaut.h 𝐻 = (LHypβ€˜πΎ)
ltrnlaut.i 𝐼 = (LAutβ€˜πΎ)
ltrnlaut.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnlaut (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ 𝐼)

Proof of Theorem ltrnlaut
StepHypRef Expression
1 ltrnlaut.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 eqid 2733 . . 3 ((LDilβ€˜πΎ)β€˜π‘Š) = ((LDilβ€˜πΎ)β€˜π‘Š)
3 ltrnlaut.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
41, 2, 3ltrnldil 38993 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
5 ltrnlaut.i . . 3 𝐼 = (LAutβ€˜πΎ)
61, 5, 2ldillaut 38982 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š)) β†’ 𝐹 ∈ 𝐼)
74, 6syldan 592 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  LHypclh 38855  LAutclaut 38856  LDilcldil 38971  LTrncltrn 38972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-ldil 38975  df-ltrn 38976
This theorem is referenced by:  ltrn1o  38995  ltrncl  38996  ltrn11  38997  ltrnle  39000  ltrncnvleN  39001  ltrnm  39002  ltrnj  39003  ltrncvr  39004  ltrnid  39006  ltrneq2  39019
  Copyright terms: Public domain W3C validator