Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnlaut Structured version   Visualization version   GIF version

Theorem ltrnlaut 40117
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnlaut.h 𝐻 = (LHyp‘𝐾)
ltrnlaut.i 𝐼 = (LAut‘𝐾)
ltrnlaut.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnlaut (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐼)

Proof of Theorem ltrnlaut
StepHypRef Expression
1 ltrnlaut.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2729 . . 3 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrnlaut.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 40116 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
5 ltrnlaut.i . . 3 𝐼 = (LAut‘𝐾)
61, 5, 2ldillaut 40105 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹𝐼)
74, 6syldan 591 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  LHypclh 39978  LAutclaut 39979  LDilcldil 40094  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-ldil 40098  df-ltrn 40099
This theorem is referenced by:  ltrn1o  40118  ltrncl  40119  ltrn11  40120  ltrnle  40123  ltrncnvleN  40124  ltrnm  40125  ltrnj  40126  ltrncvr  40127  ltrnid  40129  ltrneq2  40142
  Copyright terms: Public domain W3C validator