![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnlaut | Structured version Visualization version GIF version |
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnlaut.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
ltrnlaut.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnlaut | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnlaut.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2771 | . . 3 ⊢ ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) | |
3 | ltrnlaut.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | ltrnldil 36740 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
5 | ltrnlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
6 | 1, 5, 2 | ldillaut 36729 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹 ∈ 𝐼) |
7 | 4, 6 | syldan 583 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ‘cfv 6185 LHypclh 36602 LAutclaut 36603 LDilcldil 36718 LTrncltrn 36719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-ldil 36722 df-ltrn 36723 |
This theorem is referenced by: ltrn1o 36742 ltrncl 36743 ltrn11 36744 ltrnle 36747 ltrncnvleN 36748 ltrnm 36749 ltrnj 36750 ltrncvr 36751 ltrnid 36753 ltrneq2 36766 |
Copyright terms: Public domain | W3C validator |