Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnlaut Structured version   Visualization version   GIF version

Theorem ltrnlaut 38116
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnlaut.h 𝐻 = (LHyp‘𝐾)
ltrnlaut.i 𝐼 = (LAut‘𝐾)
ltrnlaut.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnlaut (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐼)

Proof of Theorem ltrnlaut
StepHypRef Expression
1 ltrnlaut.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2739 . . 3 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrnlaut.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 38115 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
5 ltrnlaut.i . . 3 𝐼 = (LAut‘𝐾)
61, 5, 2ldillaut 38104 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹𝐼)
74, 6syldan 590 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  LHypclh 37977  LAutclaut 37978  LDilcldil 38093  LTrncltrn 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-ldil 38097  df-ltrn 38098
This theorem is referenced by:  ltrn1o  38117  ltrncl  38118  ltrn11  38119  ltrnle  38122  ltrncnvleN  38123  ltrnm  38124  ltrnj  38125  ltrncvr  38126  ltrnid  38128  ltrneq2  38141
  Copyright terms: Public domain W3C validator