Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnlaut | Structured version Visualization version GIF version |
Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnlaut.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
ltrnlaut.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnlaut | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnlaut.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) | |
3 | ltrnlaut.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | ltrnldil 38115 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
5 | ltrnlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
6 | 1, 5, 2 | ldillaut 38104 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹 ∈ 𝐼) |
7 | 4, 6 | syldan 590 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 LHypclh 37977 LAutclaut 37978 LDilcldil 38093 LTrncltrn 38094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-ldil 38097 df-ltrn 38098 |
This theorem is referenced by: ltrn1o 38117 ltrncl 38118 ltrn11 38119 ltrnle 38122 ltrncnvleN 38123 ltrnm 38124 ltrnj 38125 ltrncvr 38126 ltrnid 38128 ltrneq2 38141 |
Copyright terms: Public domain | W3C validator |