MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Visualization version   GIF version

Theorem bpos1lem 27344
Description: Lemma for bpos1 27345. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
bpos1.2 (𝑁 ∈ (ℤ𝑃) → 𝜑)
bpos1.3 𝑃 ∈ ℙ
bpos1.4 𝐴 ∈ ℕ0
bpos1.5 (𝐴 · 2) = 𝐵
bpos1.6 𝐴 < 𝑃
bpos1.7 (𝑃 < 𝐵𝑃 = 𝐵)
Assertion
Ref Expression
bpos1lem (𝑁 ∈ (ℤ𝐴) → 𝜑)
Distinct variable groups:   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑝)   𝐵(𝑝)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6 𝑃 ∈ ℙ
2 prmnn 16721 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2ax-mp 5 . . . . 5 𝑃 ∈ ℕ
43nnzi 12667 . . . 4 𝑃 ∈ ℤ
5 eluzelz 12913 . . . 4 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
6 eluz 12917 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
74, 5, 6sylancr 586 . . 3 (𝑁 ∈ (ℤ𝐴) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
8 bpos1.2 . . 3 (𝑁 ∈ (ℤ𝑃) → 𝜑)
97, 8biimtrrdi 254 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝜑))
103nnrei 12302 . . . . . . . 8 𝑃 ∈ ℝ
1110a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃 ∈ ℝ)
12 bpos1.5 . . . . . . . . 9 (𝐴 · 2) = 𝐵
13 bpos1.4 . . . . . . . . . . 11 𝐴 ∈ ℕ0
1413nn0rei 12564 . . . . . . . . . 10 𝐴 ∈ ℝ
15 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
1614, 15remulcli 11306 . . . . . . . . 9 (𝐴 · 2) ∈ ℝ
1712, 16eqeltrri 2841 . . . . . . . 8 𝐵 ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
19 eluzelre 12914 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
20 remulcl 11269 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2115, 19, 20sylancr 586 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → (2 · 𝑁) ∈ ℝ)
22 bpos1.7 . . . . . . . . 9 (𝑃 < 𝐵𝑃 = 𝐵)
2310, 17leloei 11407 . . . . . . . . 9 (𝑃𝐵 ↔ (𝑃 < 𝐵𝑃 = 𝐵))
2422, 23mpbir 231 . . . . . . . 8 𝑃𝐵
2524a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃𝐵)
2613nn0cni 12565 . . . . . . . . 9 𝐴 ∈ ℂ
27 2cn 12368 . . . . . . . . 9 2 ∈ ℂ
2826, 27, 12mulcomli 11299 . . . . . . . 8 (2 · 𝐴) = 𝐵
29 eluzle 12916 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → 𝐴𝑁)
30 2pos 12396 . . . . . . . . . . . 12 0 < 2
3115, 30pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 12147 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3314, 31, 32mp3an13 1452 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3419, 33syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3529, 34mpbid 232 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → (2 · 𝐴) ≤ (2 · 𝑁))
3628, 35eqbrtrrid 5202 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ≤ (2 · 𝑁))
3711, 18, 21, 25, 36letrd 11447 . . . . . 6 (𝑁 ∈ (ℤ𝐴) → 𝑃 ≤ (2 · 𝑁))
3837anim2i 616 . . . . 5 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁)))
39 breq2 5170 . . . . . . 7 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
40 breq1 5169 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑃 ≤ (2 · 𝑁)))
4139, 40anbi12d 631 . . . . . 6 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))))
4241rspcev 3635 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
431, 38, 42sylancr 586 . . . 4 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
44 bpos1.1 . . . 4 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
4543, 44syl 17 . . 3 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → 𝜑)
4645expcom 413 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑁 < 𝑃𝜑))
47 lelttric 11397 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃𝑁𝑁 < 𝑃))
4810, 19, 47sylancr 586 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝑁 < 𝑃))
499, 46, 48mpjaod 859 1 (𝑁 ∈ (ℤ𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189   < clt 11324  cle 11325  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-prm 16719
This theorem is referenced by:  bpos1  27345
  Copyright terms: Public domain W3C validator