MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Visualization version   GIF version

Theorem bpos1lem 26430
Description: Lemma for bpos1 26431. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
bpos1.2 (𝑁 ∈ (ℤ𝑃) → 𝜑)
bpos1.3 𝑃 ∈ ℙ
bpos1.4 𝐴 ∈ ℕ0
bpos1.5 (𝐴 · 2) = 𝐵
bpos1.6 𝐴 < 𝑃
bpos1.7 (𝑃 < 𝐵𝑃 = 𝐵)
Assertion
Ref Expression
bpos1lem (𝑁 ∈ (ℤ𝐴) → 𝜑)
Distinct variable groups:   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑝)   𝐵(𝑝)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6 𝑃 ∈ ℙ
2 prmnn 16379 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2ax-mp 5 . . . . 5 𝑃 ∈ ℕ
43nnzi 12344 . . . 4 𝑃 ∈ ℤ
5 eluzelz 12592 . . . 4 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
6 eluz 12596 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
74, 5, 6sylancr 587 . . 3 (𝑁 ∈ (ℤ𝐴) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
8 bpos1.2 . . 3 (𝑁 ∈ (ℤ𝑃) → 𝜑)
97, 8syl6bir 253 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝜑))
103nnrei 11982 . . . . . . . 8 𝑃 ∈ ℝ
1110a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃 ∈ ℝ)
12 bpos1.5 . . . . . . . . 9 (𝐴 · 2) = 𝐵
13 bpos1.4 . . . . . . . . . . 11 𝐴 ∈ ℕ0
1413nn0rei 12244 . . . . . . . . . 10 𝐴 ∈ ℝ
15 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
1614, 15remulcli 10991 . . . . . . . . 9 (𝐴 · 2) ∈ ℝ
1712, 16eqeltrri 2836 . . . . . . . 8 𝐵 ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
19 eluzelre 12593 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
20 remulcl 10956 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2115, 19, 20sylancr 587 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → (2 · 𝑁) ∈ ℝ)
22 bpos1.7 . . . . . . . . 9 (𝑃 < 𝐵𝑃 = 𝐵)
2310, 17leloei 11092 . . . . . . . . 9 (𝑃𝐵 ↔ (𝑃 < 𝐵𝑃 = 𝐵))
2422, 23mpbir 230 . . . . . . . 8 𝑃𝐵
2524a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃𝐵)
2613nn0cni 12245 . . . . . . . . 9 𝐴 ∈ ℂ
27 2cn 12048 . . . . . . . . 9 2 ∈ ℂ
2826, 27, 12mulcomli 10984 . . . . . . . 8 (2 · 𝐴) = 𝐵
29 eluzle 12595 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → 𝐴𝑁)
30 2pos 12076 . . . . . . . . . . . 12 0 < 2
3115, 30pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11828 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3314, 31, 32mp3an13 1451 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3419, 33syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3529, 34mpbid 231 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → (2 · 𝐴) ≤ (2 · 𝑁))
3628, 35eqbrtrrid 5110 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ≤ (2 · 𝑁))
3711, 18, 21, 25, 36letrd 11132 . . . . . 6 (𝑁 ∈ (ℤ𝐴) → 𝑃 ≤ (2 · 𝑁))
3837anim2i 617 . . . . 5 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁)))
39 breq2 5078 . . . . . . 7 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
40 breq1 5077 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑃 ≤ (2 · 𝑁)))
4139, 40anbi12d 631 . . . . . 6 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))))
4241rspcev 3561 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
431, 38, 42sylancr 587 . . . 4 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
44 bpos1.1 . . . 4 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
4543, 44syl 17 . . 3 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → 𝜑)
4645expcom 414 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑁 < 𝑃𝜑))
47 lelttric 11082 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃𝑁𝑁 < 𝑃))
4810, 19, 47sylancr 587 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝑁 < 𝑃))
499, 46, 48mpjaod 857 1 (𝑁 ∈ (ℤ𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-prm 16377
This theorem is referenced by:  bpos1  26431
  Copyright terms: Public domain W3C validator