MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Visualization version   GIF version

Theorem bpos1lem 25852
Description: Lemma for bpos1 25853. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
bpos1.2 (𝑁 ∈ (ℤ𝑃) → 𝜑)
bpos1.3 𝑃 ∈ ℙ
bpos1.4 𝐴 ∈ ℕ0
bpos1.5 (𝐴 · 2) = 𝐵
bpos1.6 𝐴 < 𝑃
bpos1.7 (𝑃 < 𝐵𝑃 = 𝐵)
Assertion
Ref Expression
bpos1lem (𝑁 ∈ (ℤ𝐴) → 𝜑)
Distinct variable groups:   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑝)   𝐵(𝑝)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6 𝑃 ∈ ℙ
2 prmnn 16012 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2ax-mp 5 . . . . 5 𝑃 ∈ ℕ
43nnzi 12000 . . . 4 𝑃 ∈ ℤ
5 eluzelz 12247 . . . 4 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
6 eluz 12251 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
74, 5, 6sylancr 589 . . 3 (𝑁 ∈ (ℤ𝐴) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
8 bpos1.2 . . 3 (𝑁 ∈ (ℤ𝑃) → 𝜑)
97, 8syl6bir 256 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝜑))
103nnrei 11641 . . . . . . . 8 𝑃 ∈ ℝ
1110a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃 ∈ ℝ)
12 bpos1.5 . . . . . . . . 9 (𝐴 · 2) = 𝐵
13 bpos1.4 . . . . . . . . . . 11 𝐴 ∈ ℕ0
1413nn0rei 11902 . . . . . . . . . 10 𝐴 ∈ ℝ
15 2re 11705 . . . . . . . . . 10 2 ∈ ℝ
1614, 15remulcli 10651 . . . . . . . . 9 (𝐴 · 2) ∈ ℝ
1712, 16eqeltrri 2910 . . . . . . . 8 𝐵 ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
19 eluzelre 12248 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
20 remulcl 10616 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2115, 19, 20sylancr 589 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → (2 · 𝑁) ∈ ℝ)
22 bpos1.7 . . . . . . . . 9 (𝑃 < 𝐵𝑃 = 𝐵)
2310, 17leloei 10751 . . . . . . . . 9 (𝑃𝐵 ↔ (𝑃 < 𝐵𝑃 = 𝐵))
2422, 23mpbir 233 . . . . . . . 8 𝑃𝐵
2524a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃𝐵)
2613nn0cni 11903 . . . . . . . . 9 𝐴 ∈ ℂ
27 2cn 11706 . . . . . . . . 9 2 ∈ ℂ
2826, 27, 12mulcomli 10644 . . . . . . . 8 (2 · 𝐴) = 𝐵
29 eluzle 12250 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → 𝐴𝑁)
30 2pos 11734 . . . . . . . . . . . 12 0 < 2
3115, 30pm3.2i 473 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11487 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3314, 31, 32mp3an13 1448 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3419, 33syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3529, 34mpbid 234 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → (2 · 𝐴) ≤ (2 · 𝑁))
3628, 35eqbrtrrid 5095 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ≤ (2 · 𝑁))
3711, 18, 21, 25, 36letrd 10791 . . . . . 6 (𝑁 ∈ (ℤ𝐴) → 𝑃 ≤ (2 · 𝑁))
3837anim2i 618 . . . . 5 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁)))
39 breq2 5063 . . . . . . 7 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
40 breq1 5062 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑃 ≤ (2 · 𝑁)))
4139, 40anbi12d 632 . . . . . 6 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))))
4241rspcev 3623 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
431, 38, 42sylancr 589 . . . 4 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
44 bpos1.1 . . . 4 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
4543, 44syl 17 . . 3 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → 𝜑)
4645expcom 416 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑁 < 𝑃𝜑))
47 lelttric 10741 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃𝑁𝑁 < 𝑃))
4810, 19, 47sylancr 589 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝑁 < 𝑃))
499, 46, 48mpjaod 856 1 (𝑁 ∈ (ℤ𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536   < clt 10669  cle 10670  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-prm 16010
This theorem is referenced by:  bpos1  25853
  Copyright terms: Public domain W3C validator