Proof of Theorem bpos1lem
| Step | Hyp | Ref
| Expression |
| 1 | | bpos1.3 |
. . . . . 6
⊢ 𝑃 ∈ ℙ |
| 2 | | prmnn 16698 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ 𝑃 ∈ ℕ |
| 4 | 3 | nnzi 12621 |
. . . 4
⊢ 𝑃 ∈ ℤ |
| 5 | | eluzelz 12867 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝑁 ∈ ℤ) |
| 6 | | eluz 12871 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑃) ↔ 𝑃 ≤ 𝑁)) |
| 7 | 4, 5, 6 | sylancr 587 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (𝑁 ∈ (ℤ≥‘𝑃) ↔ 𝑃 ≤ 𝑁)) |
| 8 | | bpos1.2 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑃) → 𝜑) |
| 9 | 7, 8 | biimtrrdi 254 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (𝑃 ≤ 𝑁 → 𝜑)) |
| 10 | 3 | nnrei 12254 |
. . . . . . . 8
⊢ 𝑃 ∈ ℝ |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝑃 ∈ ℝ) |
| 12 | | bpos1.5 |
. . . . . . . . 9
⊢ (𝐴 · 2) = 𝐵 |
| 13 | | bpos1.4 |
. . . . . . . . . . 11
⊢ 𝐴 ∈
ℕ0 |
| 14 | 13 | nn0rei 12517 |
. . . . . . . . . 10
⊢ 𝐴 ∈ ℝ |
| 15 | | 2re 12319 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 16 | 14, 15 | remulcli 11256 |
. . . . . . . . 9
⊢ (𝐴 · 2) ∈
ℝ |
| 17 | 12, 16 | eqeltrri 2832 |
. . . . . . . 8
⊢ 𝐵 ∈ ℝ |
| 18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝐵 ∈ ℝ) |
| 19 | | eluzelre 12868 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝑁 ∈ ℝ) |
| 20 | | remulcl 11219 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ) → (2 · 𝑁) ∈ ℝ) |
| 21 | 15, 19, 20 | sylancr 587 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (2 · 𝑁) ∈ ℝ) |
| 22 | | bpos1.7 |
. . . . . . . . 9
⊢ (𝑃 < 𝐵 ∨ 𝑃 = 𝐵) |
| 23 | 10, 17 | leloei 11357 |
. . . . . . . . 9
⊢ (𝑃 ≤ 𝐵 ↔ (𝑃 < 𝐵 ∨ 𝑃 = 𝐵)) |
| 24 | 22, 23 | mpbir 231 |
. . . . . . . 8
⊢ 𝑃 ≤ 𝐵 |
| 25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝑃 ≤ 𝐵) |
| 26 | 13 | nn0cni 12518 |
. . . . . . . . 9
⊢ 𝐴 ∈ ℂ |
| 27 | | 2cn 12320 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
| 28 | 26, 27, 12 | mulcomli 11249 |
. . . . . . . 8
⊢ (2
· 𝐴) = 𝐵 |
| 29 | | eluzle 12870 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝐴 ≤ 𝑁) |
| 30 | | 2pos 12348 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
| 31 | 15, 30 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 32 | | lemul2 12099 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → (𝐴 ≤ 𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁))) |
| 33 | 14, 31, 32 | mp3an13 1454 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (𝐴 ≤ 𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁))) |
| 34 | 19, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (𝐴 ≤ 𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁))) |
| 35 | 29, 34 | mpbid 232 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (2 · 𝐴) ≤ (2 · 𝑁)) |
| 36 | 28, 35 | eqbrtrrid 5160 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝐵 ≤ (2 · 𝑁)) |
| 37 | 11, 18, 21, 25, 36 | letrd 11397 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝑃 ≤ (2 · 𝑁)) |
| 38 | 37 | anim2i 617 |
. . . . 5
⊢ ((𝑁 < 𝑃 ∧ 𝑁 ∈ (ℤ≥‘𝐴)) → (𝑁 < 𝑃 ∧ 𝑃 ≤ (2 · 𝑁))) |
| 39 | | breq2 5128 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑁 < 𝑝 ↔ 𝑁 < 𝑃)) |
| 40 | | breq1 5127 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑃 ≤ (2 · 𝑁))) |
| 41 | 39, 40 | anbi12d 632 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑃 ∧ 𝑃 ≤ (2 · 𝑁)))) |
| 42 | 41 | rspcev 3606 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 < 𝑃 ∧ 𝑃 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) |
| 43 | 1, 38, 42 | sylancr 587 |
. . . 4
⊢ ((𝑁 < 𝑃 ∧ 𝑁 ∈ (ℤ≥‘𝐴)) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) |
| 44 | | bpos1.1 |
. . . 4
⊢
(∃𝑝 ∈
ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁)) → 𝜑) |
| 45 | 43, 44 | syl 17 |
. . 3
⊢ ((𝑁 < 𝑃 ∧ 𝑁 ∈ (ℤ≥‘𝐴)) → 𝜑) |
| 46 | 45 | expcom 413 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (𝑁 < 𝑃 → 𝜑)) |
| 47 | | lelttric 11347 |
. . 3
⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃 ≤ 𝑁 ∨ 𝑁 < 𝑃)) |
| 48 | 10, 19, 47 | sylancr 587 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (𝑃 ≤ 𝑁 ∨ 𝑁 < 𝑃)) |
| 49 | 9, 46, 48 | mpjaod 860 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → 𝜑) |