MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Visualization version   GIF version

Theorem bpos1lem 27303
Description: Lemma for bpos1 27304. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
bpos1.2 (𝑁 ∈ (ℤ𝑃) → 𝜑)
bpos1.3 𝑃 ∈ ℙ
bpos1.4 𝐴 ∈ ℕ0
bpos1.5 (𝐴 · 2) = 𝐵
bpos1.6 𝐴 < 𝑃
bpos1.7 (𝑃 < 𝐵𝑃 = 𝐵)
Assertion
Ref Expression
bpos1lem (𝑁 ∈ (ℤ𝐴) → 𝜑)
Distinct variable groups:   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑝)   𝐵(𝑝)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6 𝑃 ∈ ℙ
2 prmnn 16670 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2ax-mp 5 . . . . 5 𝑃 ∈ ℕ
43nnzi 12633 . . . 4 𝑃 ∈ ℤ
5 eluzelz 12879 . . . 4 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
6 eluz 12883 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
74, 5, 6sylancr 585 . . 3 (𝑁 ∈ (ℤ𝐴) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
8 bpos1.2 . . 3 (𝑁 ∈ (ℤ𝑃) → 𝜑)
97, 8biimtrrdi 253 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝜑))
103nnrei 12268 . . . . . . . 8 𝑃 ∈ ℝ
1110a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃 ∈ ℝ)
12 bpos1.5 . . . . . . . . 9 (𝐴 · 2) = 𝐵
13 bpos1.4 . . . . . . . . . . 11 𝐴 ∈ ℕ0
1413nn0rei 12530 . . . . . . . . . 10 𝐴 ∈ ℝ
15 2re 12333 . . . . . . . . . 10 2 ∈ ℝ
1614, 15remulcli 11276 . . . . . . . . 9 (𝐴 · 2) ∈ ℝ
1712, 16eqeltrri 2822 . . . . . . . 8 𝐵 ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
19 eluzelre 12880 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
20 remulcl 11239 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2115, 19, 20sylancr 585 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → (2 · 𝑁) ∈ ℝ)
22 bpos1.7 . . . . . . . . 9 (𝑃 < 𝐵𝑃 = 𝐵)
2310, 17leloei 11377 . . . . . . . . 9 (𝑃𝐵 ↔ (𝑃 < 𝐵𝑃 = 𝐵))
2422, 23mpbir 230 . . . . . . . 8 𝑃𝐵
2524a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃𝐵)
2613nn0cni 12531 . . . . . . . . 9 𝐴 ∈ ℂ
27 2cn 12334 . . . . . . . . 9 2 ∈ ℂ
2826, 27, 12mulcomli 11269 . . . . . . . 8 (2 · 𝐴) = 𝐵
29 eluzle 12882 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → 𝐴𝑁)
30 2pos 12362 . . . . . . . . . . . 12 0 < 2
3115, 30pm3.2i 469 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 12114 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3314, 31, 32mp3an13 1448 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3419, 33syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3529, 34mpbid 231 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → (2 · 𝐴) ≤ (2 · 𝑁))
3628, 35eqbrtrrid 5188 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ≤ (2 · 𝑁))
3711, 18, 21, 25, 36letrd 11417 . . . . . 6 (𝑁 ∈ (ℤ𝐴) → 𝑃 ≤ (2 · 𝑁))
3837anim2i 615 . . . . 5 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁)))
39 breq2 5156 . . . . . . 7 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
40 breq1 5155 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑃 ≤ (2 · 𝑁)))
4139, 40anbi12d 630 . . . . . 6 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))))
4241rspcev 3607 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
431, 38, 42sylancr 585 . . . 4 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
44 bpos1.1 . . . 4 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
4543, 44syl 17 . . 3 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → 𝜑)
4645expcom 412 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑁 < 𝑃𝜑))
47 lelttric 11367 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃𝑁𝑁 < 𝑃))
4810, 19, 47sylancr 585 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝑁 < 𝑃))
499, 46, 48mpjaod 858 1 (𝑁 ∈ (ℤ𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wrex 3059   class class class wbr 5152  cfv 6553  (class class class)co 7423  cr 11153  0cc0 11154   · cmul 11159   < clt 11294  cle 11295  cn 12259  2c2 12314  0cn0 12519  cz 12605  cuz 12869  cprime 16667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-n0 12520  df-z 12606  df-uz 12870  df-prm 16668
This theorem is referenced by:  bpos1  27304
  Copyright terms: Public domain W3C validator