Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reorelicc Structured version   Visualization version   GIF version

Theorem reorelicc 46056
Description: Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
reorelicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))

Proof of Theorem reorelicc
StepHypRef Expression
1 orc 864 . . . . . . 7 (𝐶 < 𝐴 → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
21a1d 25 . . . . . 6 (𝐶 < 𝐴 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵))))
3 simp3 1137 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
43ad2antrr 723 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶 ∈ ℝ)
5 lenlt 11053 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
65biimprd 247 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐶 < 𝐴𝐴𝐶))
763adant2 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐶 < 𝐴𝐴𝐶))
87adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (¬ 𝐶 < 𝐴𝐴𝐶))
98imp 407 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐴𝐶)
10 simplr 766 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶𝐵)
11 3simpa 1147 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1211ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13 elicc2 13144 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
1412, 13syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
154, 9, 10, 14mpbir3and 1341 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶 ∈ (𝐴[,]𝐵))
1615olcd 871 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
1716expcom 414 . . . . . 6 𝐶 < 𝐴 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵))))
182, 17pm2.61i 182 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
1918orcd 870 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2019ex 413 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶)))
21 olc 865 . . . 4 (𝐵 < 𝐶 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2221a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶)))
23 simp2 1136 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
24 lelttric 11082 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵𝐵 < 𝐶))
253, 23, 24syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵𝐵 < 𝐶))
2620, 22, 25mpjaod 857 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
27 df-3or 1087 . 2 ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶) ↔ ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2826, 27sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870   < clt 11009  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-icc 13086
This theorem is referenced by:  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator