Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reorelicc Structured version   Visualization version   GIF version

Theorem reorelicc 48748
Description: Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
reorelicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))

Proof of Theorem reorelicc
StepHypRef Expression
1 orc 867 . . . . . . 7 (𝐶 < 𝐴 → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
21a1d 25 . . . . . 6 (𝐶 < 𝐴 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵))))
3 simp3 1138 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
43ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶 ∈ ℝ)
5 lenlt 11191 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
65biimprd 248 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐶 < 𝐴𝐴𝐶))
763adant2 1131 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐶 < 𝐴𝐴𝐶))
87adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (¬ 𝐶 < 𝐴𝐴𝐶))
98imp 406 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐴𝐶)
10 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶𝐵)
11 3simpa 1148 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1211ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13 elicc2 13311 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
1412, 13syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
154, 9, 10, 14mpbir3and 1343 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶 ∈ (𝐴[,]𝐵))
1615olcd 874 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
1716expcom 413 . . . . . 6 𝐶 < 𝐴 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵))))
182, 17pm2.61i 182 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
1918orcd 873 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2019ex 412 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶)))
21 olc 868 . . . 4 (𝐵 < 𝐶 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2221a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶)))
23 simp2 1137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
24 lelttric 11220 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵𝐵 < 𝐶))
253, 23, 24syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵𝐵 < 𝐶))
2620, 22, 25mpjaod 860 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
27 df-3or 1087 . 2 ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶) ↔ ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2826, 27sylibr 234 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086  wcel 2111   class class class wbr 5091  (class class class)co 7346  cr 11005   < clt 11146  cle 11147  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-icc 13252
This theorem is referenced by:  eenglngeehlnmlem2  48776
  Copyright terms: Public domain W3C validator