Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reorelicc Structured version   Visualization version   GIF version

Theorem reorelicc 43290
Description: Membership in and outside of a closed real interval. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
reorelicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))

Proof of Theorem reorelicc
StepHypRef Expression
1 orc 898 . . . . . . 7 (𝐶 < 𝐴 → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
21a1d 25 . . . . . 6 (𝐶 < 𝐴 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵))))
3 simp3 1172 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
43ad2antrr 717 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶 ∈ ℝ)
5 lenlt 10442 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
65biimprd 240 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐶 < 𝐴𝐴𝐶))
763adant2 1165 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 𝐶 < 𝐴𝐴𝐶))
87adantr 474 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (¬ 𝐶 < 𝐴𝐴𝐶))
98imp 397 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐴𝐶)
10 simplr 785 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶𝐵)
11 3simpa 1182 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1211ad2antrr 717 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13 elicc2 12533 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
1412, 13syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
154, 9, 10, 14mpbir3and 1446 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → 𝐶 ∈ (𝐴[,]𝐵))
1615olcd 905 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) ∧ ¬ 𝐶 < 𝐴) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
1716expcom 404 . . . . . 6 𝐶 < 𝐴 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵))))
182, 17pm2.61i 177 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)))
1918orcd 904 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2019ex 403 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶)))
21 olc 899 . . . 4 (𝐵 < 𝐶 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2221a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶)))
23 simp2 1171 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
24 lelttric 10470 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵𝐵 < 𝐶))
253, 23, 24syl2anc 579 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵𝐵 < 𝐶))
2620, 22, 25mpjaod 891 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
27 df-3or 1112 . 2 ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶) ↔ ((𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵)) ∨ 𝐵 < 𝐶))
2826, 27sylibr 226 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴𝐶 ∈ (𝐴[,]𝐵) ∨ 𝐵 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  w3o 1110  w3a 1111  wcel 2164   class class class wbr 4875  (class class class)co 6910  cr 10258   < clt 10398  cle 10399  [,]cicc 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-pre-lttri 10333  ax-pre-lttrn 10334
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-icc 12477
This theorem is referenced by:  eenglngeehlnmlem2  43302
  Copyright terms: Public domain W3C validator