| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzouzsplit | Structured version Visualization version GIF version | ||
| Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| Ref | Expression |
|---|---|
| fzouzsplit | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12753 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 2 | eluzelre 12753 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℝ) | |
| 3 | lelttric 11230 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) |
| 5 | 4 | orcomd 871 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥)) |
| 6 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
| 7 | eluzelz 12752 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 8 | elfzo2 13572 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵)) | |
| 9 | df-3an 1088 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) | |
| 10 | 8, 9 | bitri 275 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) |
| 11 | 10 | baib 535 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
| 12 | 6, 7, 11 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
| 13 | eluzelz 12752 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℤ) | |
| 14 | eluz 12756 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) | |
| 15 | 7, 13, 14 | syl2an 596 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) |
| 16 | 12, 15 | orbi12d 918 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)) ↔ (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥))) |
| 17 | 5, 16 | mpbird 257 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)))) |
| 19 | elun 4104 | . . . 4 ⊢ (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) | |
| 20 | 18, 19 | imbitrrdi 252 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)))) |
| 21 | 20 | ssrdv 3937 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
| 22 | elfzouz 13573 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
| 23 | 22 | ssriv 3935 | . . . 4 ⊢ (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴) |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴)) |
| 25 | uzss 12765 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐵) ⊆ (ℤ≥‘𝐴)) | |
| 26 | 24, 25 | unssd 4143 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ⊆ (ℤ≥‘𝐴)) |
| 27 | 21, 26 | eqssd 3949 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3897 ⊆ wss 3899 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 < clt 11156 ≤ cle 11157 ℤcz 12478 ℤ≥cuz 12742 ..^cfzo 13564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 |
| This theorem is referenced by: bitsres 16394 nn0split01 32811 evl1deg2 33551 evl1deg3 33552 sseqfn 34414 sseqf 34416 poimirlem30 37700 mblfinlem2 37708 fmtno4prmfac 47686 wtgoldbnnsum4prm 47916 bgoldbnnsum3prm 47918 |
| Copyright terms: Public domain | W3C validator |