| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzouzsplit | Structured version Visualization version GIF version | ||
| Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| Ref | Expression |
|---|---|
| fzouzsplit | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12764 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 2 | eluzelre 12764 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℝ) | |
| 3 | lelttric 11241 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) |
| 5 | 4 | orcomd 871 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥)) |
| 6 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
| 7 | eluzelz 12763 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 8 | elfzo2 13583 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵)) | |
| 9 | df-3an 1088 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) | |
| 10 | 8, 9 | bitri 275 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) |
| 11 | 10 | baib 535 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
| 12 | 6, 7, 11 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) |
| 13 | eluzelz 12763 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℤ) | |
| 14 | eluz 12767 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) | |
| 15 | 7, 13, 14 | syl2an 596 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) |
| 16 | 12, 15 | orbi12d 918 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)) ↔ (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥))) |
| 17 | 5, 16 | mpbird 257 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)))) |
| 19 | elun 4106 | . . . 4 ⊢ (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) | |
| 20 | 18, 19 | imbitrrdi 252 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)))) |
| 21 | 20 | ssrdv 3943 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
| 22 | elfzouz 13584 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
| 23 | 22 | ssriv 3941 | . . . 4 ⊢ (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴) |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴)) |
| 25 | uzss 12776 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐵) ⊆ (ℤ≥‘𝐴)) | |
| 26 | 24, 25 | unssd 4145 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ⊆ (ℤ≥‘𝐴)) |
| 27 | 21, 26 | eqssd 3955 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 < clt 11168 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 ..^cfzo 13575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 |
| This theorem is referenced by: bitsres 16402 nn0split01 32775 evl1deg2 33522 evl1deg3 33523 sseqfn 34357 sseqf 34359 poimirlem30 37629 mblfinlem2 37637 fmtno4prmfac 47557 wtgoldbnnsum4prm 47787 bgoldbnnsum3prm 47789 |
| Copyright terms: Public domain | W3C validator |