MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzouzsplit Structured version   Visualization version   GIF version

Theorem fzouzsplit 13604
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))

Proof of Theorem fzouzsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12753 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
2 eluzelre 12753 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ℝ)
3 lelttric 11230 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵𝑥𝑥 < 𝐵))
41, 2, 3syl2an 596 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝐵𝑥𝑥 < 𝐵))
54orcomd 871 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 < 𝐵𝐵𝑥))
6 id 22 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ (ℤ𝐴))
7 eluzelz 12752 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
8 elfzo2 13572 . . . . . . . . . 10 (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵))
9 df-3an 1088 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
108, 9bitri 275 . . . . . . . . 9 (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵))
1110baib 535 . . . . . . . 8 ((𝑥 ∈ (ℤ𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
126, 7, 11syl2anr 597 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵))
13 eluzelz 12752 . . . . . . . 8 (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ℤ)
14 eluz 12756 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
157, 13, 14syl2an 596 . . . . . . 7 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (ℤ𝐵) ↔ 𝐵𝑥))
1612, 15orbi12d 918 . . . . . 6 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)) ↔ (𝑥 < 𝐵𝐵𝑥)))
175, 16mpbird 257 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝑥 ∈ (ℤ𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
1817ex 412 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵))))
19 elun 4104 . . . 4 (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ𝐵)))
2018, 19imbitrrdi 252 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝑥 ∈ (ℤ𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ𝐵))))
2120ssrdv 3937 . 2 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ𝐵)))
22 elfzouz 13573 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ𝐴))
2322ssriv 3935 . . . 4 (𝐴..^𝐵) ⊆ (ℤ𝐴)
2423a1i 11 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) ⊆ (ℤ𝐴))
25 uzss 12765 . . 3 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐵) ⊆ (ℤ𝐴))
2624, 25unssd 4143 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ (ℤ𝐵)) ⊆ (ℤ𝐴))
2721, 26eqssd 3949 1 (𝐵 ∈ (ℤ𝐴) → (ℤ𝐴) = ((𝐴..^𝐵) ∪ (ℤ𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  cun 3897  wss 3899   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11015   < clt 11156  cle 11157  cz 12478  cuz 12742  ..^cfzo 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565
This theorem is referenced by:  bitsres  16394  nn0split01  32811  evl1deg2  33551  evl1deg3  33552  sseqfn  34414  sseqf  34416  poimirlem30  37700  mblfinlem2  37708  fmtno4prmfac  47686  wtgoldbnnsum4prm  47916  bgoldbnnsum3prm  47918
  Copyright terms: Public domain W3C validator