|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fzouzsplit | Structured version Visualization version GIF version | ||
| Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| fzouzsplit | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluzelre 12890 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 2 | eluzelre 12890 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℝ) | |
| 3 | lelttric 11369 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵)) | 
| 5 | 4 | orcomd 871 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥)) | 
| 6 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
| 7 | eluzelz 12889 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 8 | elfzo2 13703 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ (𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵)) | |
| 9 | df-3an 1088 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) | |
| 10 | 8, 9 | bitri 275 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐴..^𝐵) ↔ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) ∧ 𝑥 < 𝐵)) | 
| 11 | 10 | baib 535 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℤ≥‘𝐴) ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) | 
| 12 | 6, 7, 11 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ↔ 𝑥 < 𝐵)) | 
| 13 | eluzelz 12889 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ℤ) | |
| 14 | eluz 12893 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) | |
| 15 | 7, 13, 14 | syl2an 596 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (ℤ≥‘𝐵) ↔ 𝐵 ≤ 𝑥)) | 
| 16 | 12, 15 | orbi12d 918 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → ((𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)) ↔ (𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥))) | 
| 17 | 5, 16 | mpbird 257 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝑥 ∈ (ℤ≥‘𝐴)) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) | 
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵)))) | 
| 19 | elun 4152 | . . . 4 ⊢ (𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∨ 𝑥 ∈ (ℤ≥‘𝐵))) | |
| 20 | 18, 19 | imbitrrdi 252 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝑥 ∈ (ℤ≥‘𝐴) → 𝑥 ∈ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)))) | 
| 21 | 20 | ssrdv 3988 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) ⊆ ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | 
| 22 | elfzouz 13704 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ (ℤ≥‘𝐴)) | |
| 23 | 22 | ssriv 3986 | . . . 4 ⊢ (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴) | 
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) ⊆ (ℤ≥‘𝐴)) | 
| 25 | uzss 12902 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐵) ⊆ (ℤ≥‘𝐴)) | |
| 26 | 24, 25 | unssd 4191 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵)) ⊆ (ℤ≥‘𝐴)) | 
| 27 | 21, 26 | eqssd 4000 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ⊆ wss 3950 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 < clt 11296 ≤ cle 11297 ℤcz 12615 ℤ≥cuz 12879 ..^cfzo 13695 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 | 
| This theorem is referenced by: bitsres 16511 nn0split01 32820 evl1deg2 33603 evl1deg3 33604 sseqfn 34393 sseqf 34395 poimirlem30 37658 mblfinlem2 37666 fmtno4prmfac 47564 wtgoldbnnsum4prm 47794 bgoldbnnsum3prm 47796 | 
| Copyright terms: Public domain | W3C validator |