MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsplit Structured version   Visualization version   GIF version

Theorem uzsplit 13572
Description: Express an upper integer set as the disjoint (see uzdisj 13573) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzsplit (𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))

Proof of Theorem uzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12832 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
2 eluzelre 12832 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℝ)
3 lelttric 11320 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑁𝑘𝑘 < 𝑁))
41, 2, 3syl2an 596 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑁𝑘𝑘 < 𝑁))
5 eluzelz 12831 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6 eluzelz 12831 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
7 eluz 12835 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑁) ↔ 𝑁𝑘))
85, 6, 7syl2an 596 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (ℤ𝑁) ↔ 𝑁𝑘))
9 eluzle 12834 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
106, 9jca 512 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ ℤ ∧ 𝑀𝑘))
1110adantl 482 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘))
12 eluzel2 12826 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
13 elfzm11 13571 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < 𝑁)))
14 df-3an 1089 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁))
1513, 14bitrdi 286 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
1612, 5, 15syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
1711, 16mpbirand 705 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁))
188, 17orbi12d 917 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁𝑘𝑘 < 𝑁)))
194, 18mpbird 256 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (ℤ𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))))
2019orcomd 869 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)))
2120ex 413 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁))))
22 elfzuz 13496 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2322a1i 11 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀)))
24 uztrn 12839 . . . . . 6 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2524expcom 414 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
2623, 25jaod 857 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑀)))
2721, 26impbid 211 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁))))
28 elun 4148 . . 3 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)))
2927, 28bitr4di 288 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁))))
3029eqrdv 2730 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cun 3946   class class class wbr 5148  cfv 6543  (class class class)co 7408  cr 11108  1c1 11110   < clt 11247  cle 11248  cmin 11443  cz 12557  cuz 12821  ...cfz 13483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484
This theorem is referenced by:  nn0split  13615  uniioombllem3  25101  uniioombllem4  25102  plyaddlem1  25726  plymullem1  25727  trclfvdecomr  42469  nnsplit  44058  sbgoldbo  46445  aacllem  47838
  Copyright terms: Public domain W3C validator