Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzsplit | Structured version Visualization version GIF version |
Description: Express an upper integer set as the disjoint (see uzdisj 13329) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
uzsplit | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12593 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | eluzelre 12593 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℝ) | |
3 | lelttric 11082 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) | |
4 | 1, 2, 3 | syl2an 596 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
5 | eluzelz 12592 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | eluzelz 12592 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
7 | eluz 12596 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) | |
8 | 5, 6, 7 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
9 | eluzle 12595 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) | |
10 | 6, 9 | jca 512 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
11 | 10 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
12 | eluzel2 12587 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
13 | elfzm11 13327 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁))) | |
14 | df-3an 1088 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁)) | |
15 | 13, 14 | bitrdi 287 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
16 | 12, 5, 15 | syl2anr 597 | . . . . . . . . 9 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
17 | 11, 16 | mpbirand 704 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁)) |
18 | 8, 17 | orbi12d 916 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁))) |
19 | 4, 18 | mpbird 256 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1)))) |
20 | 19 | orcomd 868 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
21 | 20 | ex 413 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
22 | elfzuz 13252 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
24 | uztrn 12600 | . . . . . 6 ⊢ ((𝑘 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
25 | 24 | expcom 414 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
26 | 23, 25 | jaod 856 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
27 | 21, 26 | impbid 211 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
28 | elun 4083 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) | |
29 | 27, 28 | bitr4di 289 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁)))) |
30 | 29 | eqrdv 2736 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 < clt 11009 ≤ cle 11010 − cmin 11205 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 |
This theorem is referenced by: nn0split 13371 uniioombllem3 24749 uniioombllem4 24750 plyaddlem1 25374 plymullem1 25375 trclfvdecomr 41336 nnsplit 42897 sbgoldbo 45239 aacllem 46505 |
Copyright terms: Public domain | W3C validator |