![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzsplit | Structured version Visualization version GIF version |
Description: Express an upper integer set as the disjoint (see uzdisj 12789) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
uzsplit | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12062 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | eluzelre 12062 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℝ) | |
3 | lelttric 10539 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) | |
4 | 1, 2, 3 | syl2an 586 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
5 | eluzelz 12061 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | eluzelz 12061 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
7 | eluz 12065 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) | |
8 | 5, 6, 7 | syl2an 586 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
9 | eluzle 12064 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) | |
10 | 6, 9 | jca 504 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
11 | 10 | adantl 474 | . . . . . . . . 9 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
12 | eluzel2 12056 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
13 | elfzm11 12787 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁))) | |
14 | df-3an 1070 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁)) | |
15 | 13, 14 | syl6bb 279 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
16 | 12, 5, 15 | syl2anr 587 | . . . . . . . . 9 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
17 | 11, 16 | mpbirand 694 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁)) |
18 | 8, 17 | orbi12d 902 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁))) |
19 | 4, 18 | mpbird 249 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1)))) |
20 | 19 | orcomd 857 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
21 | 20 | ex 405 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
22 | elfzuz 12713 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
24 | uztrn 12068 | . . . . . 6 ⊢ ((𝑘 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
25 | 24 | expcom 406 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
26 | 23, 25 | jaod 845 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
27 | 21, 26 | impbid 204 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
28 | elun 4010 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) | |
29 | 27, 28 | syl6bbr 281 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁)))) |
30 | 29 | eqrdv 2770 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∪ cun 3823 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 ℝcr 10326 1c1 10328 < clt 10466 ≤ cle 10467 − cmin 10662 ℤcz 11786 ℤ≥cuz 12051 ...cfz 12701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-fz 12702 |
This theorem is referenced by: nn0split 12831 uniioombllem3 23879 uniioombllem4 23880 plyaddlem1 24496 plymullem1 24497 trclfvdecomr 39381 nnsplit 41001 sbgoldbo 43260 aacllem 44209 |
Copyright terms: Public domain | W3C validator |