MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsplit Structured version   Visualization version   GIF version

Theorem uzsplit 13498
Description: Express an upper integer set as the disjoint (see uzdisj 13499) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzsplit (𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))

Proof of Theorem uzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12749 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
2 eluzelre 12749 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℝ)
3 lelttric 11227 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑁𝑘𝑘 < 𝑁))
41, 2, 3syl2an 596 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑁𝑘𝑘 < 𝑁))
5 eluzelz 12748 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6 eluzelz 12748 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
7 eluz 12752 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑁) ↔ 𝑁𝑘))
85, 6, 7syl2an 596 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (ℤ𝑁) ↔ 𝑁𝑘))
9 eluzle 12751 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
106, 9jca 511 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ ℤ ∧ 𝑀𝑘))
1110adantl 481 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘))
12 eluzel2 12743 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
13 elfzm11 13497 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < 𝑁)))
14 df-3an 1088 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁))
1513, 14bitrdi 287 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
1612, 5, 15syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
1711, 16mpbirand 707 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁))
188, 17orbi12d 918 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁𝑘𝑘 < 𝑁)))
194, 18mpbird 257 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (ℤ𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))))
2019orcomd 871 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)))
2120ex 412 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁))))
22 elfzuz 13422 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2322a1i 11 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀)))
24 uztrn 12756 . . . . . 6 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2524expcom 413 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
2623, 25jaod 859 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑀)))
2721, 26impbid 212 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁))))
28 elun 4102 . . 3 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)))
2927, 28bitr4di 289 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁))))
3029eqrdv 2731 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  cun 3896   class class class wbr 5093  cfv 6486  (class class class)co 7352  cr 11012  1c1 11014   < clt 11153  cle 11154  cmin 11351  cz 12475  cuz 12738  ...cfz 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410
This theorem is referenced by:  nn0split  13545  uniioombllem3  25514  uniioombllem4  25515  plyaddlem1  26146  plymullem1  26147  trclfvdecomr  43845  nnsplit  45481  sbgoldbo  47911  aacllem  49926
  Copyright terms: Public domain W3C validator