![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzsplit | Structured version Visualization version GIF version |
Description: Express an upper integer set as the disjoint (see uzdisj 13612) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
uzsplit | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12869 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | eluzelre 12869 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℝ) | |
3 | lelttric 11357 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) | |
4 | 1, 2, 3 | syl2an 594 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
5 | eluzelz 12868 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | eluzelz 12868 | . . . . . . . . 9 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
7 | eluz 12872 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) | |
8 | 5, 6, 7 | syl2an 594 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
9 | eluzle 12871 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) | |
10 | 6, 9 | jca 510 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
11 | 10 | adantl 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
12 | eluzel2 12863 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
13 | elfzm11 13610 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁))) | |
14 | df-3an 1086 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁)) | |
15 | 13, 14 | bitrdi 286 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
16 | 12, 5, 15 | syl2anr 595 | . . . . . . . . 9 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
17 | 11, 16 | mpbirand 705 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁)) |
18 | 8, 17 | orbi12d 916 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁))) |
19 | 4, 18 | mpbird 256 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1)))) |
20 | 19 | orcomd 869 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
21 | 20 | ex 411 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
22 | elfzuz 13535 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
24 | uztrn 12876 | . . . . . 6 ⊢ ((𝑘 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
25 | 24 | expcom 412 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
26 | 23, 25 | jaod 857 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
27 | 21, 26 | impbid 211 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
28 | elun 4147 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) | |
29 | 27, 28 | bitr4di 288 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁)))) |
30 | 29 | eqrdv 2725 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∪ cun 3945 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 ℝcr 11143 1c1 11145 < clt 11284 ≤ cle 11285 − cmin 11480 ℤcz 12594 ℤ≥cuz 12858 ...cfz 13522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 |
This theorem is referenced by: nn0split 13654 uniioombllem3 25532 uniioombllem4 25533 plyaddlem1 26165 plymullem1 26166 trclfvdecomr 43161 nnsplit 44742 sbgoldbo 47129 aacllem 48285 |
Copyright terms: Public domain | W3C validator |