MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmp Structured version   Visualization version   GIF version

Theorem icccmp 23435
Description: A closed interval in is compact. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
Assertion
Ref Expression
icccmp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)

Proof of Theorem icccmp
Dummy variables 𝑢 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.2 . 2 𝑇 = (𝐽t (𝐴[,]𝐵))
2 icccmp.1 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 eqid 2823 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4 eqid 2823 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
5 simplll 773 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
6 simpllr 774 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
7 simplr 767 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴𝐵)
8 elpwi 4550 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
98ad2antrl 726 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝑢𝐽)
10 simprr 771 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑢)
112, 1, 3, 4, 5, 6, 7, 9, 10icccmplem3 23434 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧})
12 oveq2 7166 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴[,]𝑥) = (𝐴[,]𝐵))
1312sseq1d 4000 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐵) ⊆ 𝑧))
1413rexbidv 3299 . . . . . . . . 9 (𝑥 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1514elrab 3682 . . . . . . . 8 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1615simprbi 499 . . . . . . 7 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1711, 16syl 17 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1817expr 459 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑢 ∈ 𝒫 𝐽) → ((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1918ralrimiva 3184 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
20 retop 23372 . . . . . 6 (topGen‘ran (,)) ∈ Top
212, 20eqeltri 2911 . . . . 5 𝐽 ∈ Top
22 iccssre 12821 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2322adantr 483 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
24 uniretop 23373 . . . . . . 7 ℝ = (topGen‘ran (,))
252unieqi 4853 . . . . . . 7 𝐽 = (topGen‘ran (,))
2624, 25eqtr4i 2849 . . . . . 6 ℝ = 𝐽
2726cmpsub 22010 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2821, 23, 27sylancr 589 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2919, 28mpbird 259 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
30 rexr 10689 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31 rexr 10689 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
32 icc0 12789 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3330, 31, 32syl2an 597 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3433biimpar 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
3534oveq2d 7174 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = (𝐽t ∅))
36 rest0 21779 . . . . . 6 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
3721, 36ax-mp 5 . . . . 5 (𝐽t ∅) = {∅}
3835, 37syl6eq 2874 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = {∅})
39 0cmp 22004 . . . 4 {∅} ∈ Comp
4038, 39eqeltrdi 2923 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
41 lelttric 10749 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
4229, 40, 41mpjaodan 955 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
431, 42eqeltrid 2919 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840   class class class wbr 5068   × cxp 5555  ran crn 5558  cres 5559  ccom 5561  cfv 6357  (class class class)co 7158  Fincfn 8511  cr 10538  *cxr 10676   < clt 10677  cle 10678  cmin 10872  (,)cioo 12741  [,]cicc 12744  abscabs 14595  t crest 16696  topGenctg 16713  Topctop 21503  Compccmp 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997
This theorem is referenced by:  iicmp  23496  cnheiborlem  23560  evthicc  24062  ovolicc2  24125  dvcnvrelem2  24617  fourierdlem42  42441
  Copyright terms: Public domain W3C validator