MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmp Structured version   Visualization version   GIF version

Theorem icccmp 23894
Description: A closed interval in is compact. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
Assertion
Ref Expression
icccmp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)

Proof of Theorem icccmp
Dummy variables 𝑢 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.2 . 2 𝑇 = (𝐽t (𝐴[,]𝐵))
2 icccmp.1 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 eqid 2738 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4 eqid 2738 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
5 simplll 771 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
6 simpllr 772 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
7 simplr 765 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴𝐵)
8 elpwi 4539 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
98ad2antrl 724 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝑢𝐽)
10 simprr 769 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑢)
112, 1, 3, 4, 5, 6, 7, 9, 10icccmplem3 23893 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧})
12 oveq2 7263 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴[,]𝑥) = (𝐴[,]𝐵))
1312sseq1d 3948 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐵) ⊆ 𝑧))
1413rexbidv 3225 . . . . . . . . 9 (𝑥 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1514elrab 3617 . . . . . . . 8 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1615simprbi 496 . . . . . . 7 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1711, 16syl 17 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1817expr 456 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑢 ∈ 𝒫 𝐽) → ((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1918ralrimiva 3107 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
20 retop 23831 . . . . . 6 (topGen‘ran (,)) ∈ Top
212, 20eqeltri 2835 . . . . 5 𝐽 ∈ Top
22 iccssre 13090 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2322adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
24 uniretop 23832 . . . . . . 7 ℝ = (topGen‘ran (,))
252unieqi 4849 . . . . . . 7 𝐽 = (topGen‘ran (,))
2624, 25eqtr4i 2769 . . . . . 6 ℝ = 𝐽
2726cmpsub 22459 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2821, 23, 27sylancr 586 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2919, 28mpbird 256 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
30 rexr 10952 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31 rexr 10952 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
32 icc0 13056 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3330, 31, 32syl2an 595 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3433biimpar 477 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
3534oveq2d 7271 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = (𝐽t ∅))
36 rest0 22228 . . . . . 6 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
3721, 36ax-mp 5 . . . . 5 (𝐽t ∅) = {∅}
3835, 37eqtrdi 2795 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = {∅})
39 0cmp 22453 . . . 4 {∅} ∈ Comp
4038, 39eqeltrdi 2847 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
41 lelttric 11012 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
4229, 40, 41mpjaodan 955 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
431, 42eqeltrid 2843 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  Fincfn 8691  cr 10801  *cxr 10939   < clt 10940  cle 10941  cmin 11135  (,)cioo 13008  [,]cicc 13011  abscabs 14873  t crest 17048  topGenctg 17065  Topctop 21950  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446
This theorem is referenced by:  iicmp  23955  cnheiborlem  24023  evthicc  24528  ovolicc2  24591  dvcnvrelem2  25087  fourierdlem42  43580
  Copyright terms: Public domain W3C validator