Step | Hyp | Ref
| Expression |
1 | | icccmp.2 |
. 2
⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) |
2 | | icccmp.1 |
. . . . . . . 8
⊢ 𝐽 = (topGen‘ran
(,)) |
3 | | eqid 2738 |
. . . . . . . 8
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
4 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} |
5 | | simplll 772 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → 𝐴 ∈ ℝ) |
6 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → 𝐵 ∈ ℝ) |
7 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → 𝐴 ≤ 𝐵) |
8 | | elpwi 4542 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝒫 𝐽 → 𝑢 ⊆ 𝐽) |
9 | 8 | ad2antrl 725 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → 𝑢 ⊆ 𝐽) |
10 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → (𝐴[,]𝐵) ⊆ ∪ 𝑢) |
11 | 2, 1, 3, 4, 5, 6, 7, 9, 10 | icccmplem3 23987 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → 𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧}) |
12 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → (𝐴[,]𝑥) = (𝐴[,]𝐵)) |
13 | 12 | sseq1d 3952 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → ((𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ (𝐴[,]𝐵) ⊆ ∪ 𝑧)) |
14 | 13 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧)) |
15 | 14 | elrab 3624 |
. . . . . . . 8
⊢ (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧)) |
16 | 15 | simprbi 497 |
. . . . . . 7
⊢ (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧) |
17 | 11, 16 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ ∪ 𝑢)) → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧) |
18 | 17 | expr 457 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) ∧ 𝑢 ∈ 𝒫 𝐽) → ((𝐴[,]𝐵) ⊆ ∪ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧)) |
19 | 18 | ralrimiva 3103 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ ∪ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧)) |
20 | | retop 23925 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
21 | 2, 20 | eqeltri 2835 |
. . . . 5
⊢ 𝐽 ∈ Top |
22 | | iccssre 13161 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
23 | 22 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) ⊆ ℝ) |
24 | | uniretop 23926 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
25 | 2 | unieqi 4852 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ (topGen‘ran (,)) |
26 | 24, 25 | eqtr4i 2769 |
. . . . . 6
⊢ ℝ =
∪ 𝐽 |
27 | 26 | cmpsub 22551 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐽 ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ ∪ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧))) |
28 | 21, 23, 27 | sylancr 587 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐽 ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ ∪ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ ∪ 𝑧))) |
29 | 19, 28 | mpbird 256 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐽 ↾t (𝐴[,]𝐵)) ∈ Comp) |
30 | | rexr 11021 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
31 | | rexr 11021 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
32 | | icc0 13127 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
33 | 30, 31, 32 | syl2an 596 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
34 | 33 | biimpar 478 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅) |
35 | 34 | oveq2d 7291 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽 ↾t (𝐴[,]𝐵)) = (𝐽 ↾t
∅)) |
36 | | rest0 22320 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) =
{∅}) |
37 | 21, 36 | ax-mp 5 |
. . . . 5
⊢ (𝐽 ↾t ∅) =
{∅} |
38 | 35, 37 | eqtrdi 2794 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽 ↾t (𝐴[,]𝐵)) = {∅}) |
39 | | 0cmp 22545 |
. . . 4
⊢ {∅}
∈ Comp |
40 | 38, 39 | eqeltrdi 2847 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽 ↾t (𝐴[,]𝐵)) ∈ Comp) |
41 | | lelttric 11082 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
42 | 29, 40, 41 | mpjaodan 956 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐽 ↾t (𝐴[,]𝐵)) ∈ Comp) |
43 | 1, 42 | eqeltrid 2843 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) |