MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmp Structured version   Visualization version   GIF version

Theorem icccmp 24847
Description: A closed interval in is compact. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
Assertion
Ref Expression
icccmp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)

Proof of Theorem icccmp
Dummy variables 𝑢 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.2 . 2 𝑇 = (𝐽t (𝐴[,]𝐵))
2 icccmp.1 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 eqid 2737 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4 eqid 2737 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
5 simplll 775 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
6 simpllr 776 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
7 simplr 769 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴𝐵)
8 elpwi 4607 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
98ad2antrl 728 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝑢𝐽)
10 simprr 773 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑢)
112, 1, 3, 4, 5, 6, 7, 9, 10icccmplem3 24846 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧})
12 oveq2 7439 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴[,]𝑥) = (𝐴[,]𝐵))
1312sseq1d 4015 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐵) ⊆ 𝑧))
1413rexbidv 3179 . . . . . . . . 9 (𝑥 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1514elrab 3692 . . . . . . . 8 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1615simprbi 496 . . . . . . 7 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1711, 16syl 17 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1817expr 456 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑢 ∈ 𝒫 𝐽) → ((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1918ralrimiva 3146 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
20 retop 24782 . . . . . 6 (topGen‘ran (,)) ∈ Top
212, 20eqeltri 2837 . . . . 5 𝐽 ∈ Top
22 iccssre 13469 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2322adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
24 uniretop 24783 . . . . . . 7 ℝ = (topGen‘ran (,))
252unieqi 4919 . . . . . . 7 𝐽 = (topGen‘ran (,))
2624, 25eqtr4i 2768 . . . . . 6 ℝ = 𝐽
2726cmpsub 23408 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2821, 23, 27sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2919, 28mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
30 rexr 11307 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31 rexr 11307 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
32 icc0 13435 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3330, 31, 32syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3433biimpar 477 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
3534oveq2d 7447 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = (𝐽t ∅))
36 rest0 23177 . . . . . 6 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
3721, 36ax-mp 5 . . . . 5 (𝐽t ∅) = {∅}
3835, 37eqtrdi 2793 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = {∅})
39 0cmp 23402 . . . 4 {∅} ∈ Comp
4038, 39eqeltrdi 2849 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
41 lelttric 11368 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
4229, 40, 41mpjaodan 961 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
431, 42eqeltrid 2845 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   cuni 4907   class class class wbr 5143   × cxp 5683  ran crn 5686  cres 5687  ccom 5689  cfv 6561  (class class class)co 7431  Fincfn 8985  cr 11154  *cxr 11294   < clt 11295  cle 11296  cmin 11492  (,)cioo 13387  [,]cicc 13390  abscabs 15273  t crest 17465  topGenctg 17482  Topctop 22899  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395
This theorem is referenced by:  iicmp  24912  cnheiborlem  24986  evthicc  25494  ovolicc2  25557  dvcnvrelem2  26057  fourierdlem42  46164
  Copyright terms: Public domain W3C validator