| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lecasei | Structured version Visualization version GIF version | ||
| Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
| Ref | Expression |
|---|---|
| lecase.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lecase.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lecase.3 | ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) |
| lecase.4 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| lecasei | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecase.3 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) | |
| 2 | lecase.4 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
| 3 | lecase.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | lecase.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letric 11327 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 7 | 1, 2, 6 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2107 class class class wbr 5116 ℝcr 11120 ≤ cle 11262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-pre-lttri 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 |
| This theorem is referenced by: wloglei 11761 nn2ge 12259 max0sub 13204 leabs 15305 max0add 15316 limsupgre 15484 ntrivcvgmul 15905 1arithlem4 16931 mndodcong 19508 metustto 24477 reconn 24753 dyaddisj 25534 volcn 25544 ditgcl 25796 ditgswap 25797 ditgsplit 25799 dvfsumlem3 25972 ftc2ditg 25990 coseq0negpitopi 26448 asinlem3 26817 atanlogaddlem 26859 atanlogadd 26860 ppiub 27151 dchrisum0 27467 pntrmax 27511 padicabv 27577 nacsfix 42660 acongrep 42929 hbt 43079 fzunt1d 43406 |
| Copyright terms: Public domain | W3C validator |