| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lecasei | Structured version Visualization version GIF version | ||
| Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
| Ref | Expression |
|---|---|
| lecase.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lecase.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lecase.3 | ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) |
| lecase.4 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| lecasei | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecase.3 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) | |
| 2 | lecase.4 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
| 3 | lecase.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | lecase.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letric 11222 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 7 | 1, 2, 6 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-pre-lttri 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: wloglei 11658 nn2ge 12161 max0sub 13099 leabs 15210 max0add 15221 limsupgre 15392 ntrivcvgmul 15813 1arithlem4 16842 mndodcong 19458 metustto 24471 reconn 24747 dyaddisj 25527 volcn 25537 ditgcl 25789 ditgswap 25790 ditgsplit 25792 dvfsumlem3 25965 ftc2ditg 25983 coseq0negpitopi 26442 asinlem3 26811 atanlogaddlem 26853 atanlogadd 26854 ppiub 27145 dchrisum0 27461 pntrmax 27505 padicabv 27571 sgnval2 32724 oexpled 32837 nacsfix 42832 acongrep 43100 hbt 43250 fzunt1d 43577 |
| Copyright terms: Public domain | W3C validator |