![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lecasei | Structured version Visualization version GIF version |
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
Ref | Expression |
---|---|
lecase.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lecase.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lecase.3 | ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) |
lecase.4 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
lecasei | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lecase.3 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) | |
2 | lecase.4 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
3 | lecase.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | lecase.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letric 11318 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
7 | 1, 2, 6 | mpjaodan 955 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∈ wcel 2098 class class class wbr 5141 ℝcr 11111 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-pre-lttri 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 |
This theorem is referenced by: wloglei 11750 nn2ge 12243 max0sub 13181 leabs 15252 max0add 15263 limsupgre 15431 ntrivcvgmul 15854 1arithlem4 16868 mndodcong 19462 metustto 24417 reconn 24699 dyaddisj 25480 volcn 25490 ditgcl 25742 ditgswap 25743 ditgsplit 25745 dvfsumlem3 25918 ftc2ditg 25936 coseq0negpitopi 26393 asinlem3 26758 atanlogaddlem 26800 atanlogadd 26801 ppiub 27092 dchrisum0 27408 pntrmax 27452 padicabv 27518 nacsfix 42033 acongrep 42302 hbt 42455 fzunt1d 42789 |
Copyright terms: Public domain | W3C validator |