MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecasei Structured version   Visualization version   GIF version

Theorem lecasei 11341
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
Hypotheses
Ref Expression
lecase.1 (𝜑𝐴 ∈ ℝ)
lecase.2 (𝜑𝐵 ∈ ℝ)
lecase.3 ((𝜑𝐴𝐵) → 𝜓)
lecase.4 ((𝜑𝐵𝐴) → 𝜓)
Assertion
Ref Expression
lecasei (𝜑𝜓)

Proof of Theorem lecasei
StepHypRef Expression
1 lecase.3 . 2 ((𝜑𝐴𝐵) → 𝜓)
2 lecase.4 . 2 ((𝜑𝐵𝐴) → 𝜓)
3 lecase.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 lecase.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letric 11335 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐴𝐵𝐵𝐴))
71, 2, 6mpjaodan 960 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2108   class class class wbr 5119  cr 11128  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-pre-lttri 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  wloglei  11769  nn2ge  12267  max0sub  13212  leabs  15318  max0add  15329  limsupgre  15497  ntrivcvgmul  15918  1arithlem4  16946  mndodcong  19523  metustto  24492  reconn  24768  dyaddisj  25549  volcn  25559  ditgcl  25811  ditgswap  25812  ditgsplit  25814  dvfsumlem3  25987  ftc2ditg  26005  coseq0negpitopi  26464  asinlem3  26833  atanlogaddlem  26875  atanlogadd  26876  ppiub  27167  dchrisum0  27483  pntrmax  27527  padicabv  27593  sgnval2  32712  oexpled  32826  nacsfix  42735  acongrep  43004  hbt  43154  fzunt1d  43481
  Copyright terms: Public domain W3C validator