MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecasei Structured version   Visualization version   GIF version

Theorem lecasei 11131
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
Hypotheses
Ref Expression
lecase.1 (𝜑𝐴 ∈ ℝ)
lecase.2 (𝜑𝐵 ∈ ℝ)
lecase.3 ((𝜑𝐴𝐵) → 𝜓)
lecase.4 ((𝜑𝐵𝐴) → 𝜓)
Assertion
Ref Expression
lecasei (𝜑𝜓)

Proof of Theorem lecasei
StepHypRef Expression
1 lecase.3 . 2 ((𝜑𝐴𝐵) → 𝜓)
2 lecase.4 . 2 ((𝜑𝐵𝐴) → 𝜓)
3 lecase.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 lecase.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letric 11125 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
63, 4, 5syl2anc 585 . 2 (𝜑 → (𝐴𝐵𝐵𝐴))
71, 2, 6mpjaodan 957 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845  wcel 2104   class class class wbr 5081  cr 10920  cle 11060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-pre-lttri 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065
This theorem is referenced by:  wloglei  11557  nn2ge  12050  max0sub  12980  leabs  15060  max0add  15071  limsupgre  15239  ntrivcvgmul  15663  1arithlem4  16676  mndodcong  19199  metustto  23758  reconn  24040  dyaddisj  24809  volcn  24819  ditgcl  25071  ditgswap  25072  ditgsplit  25074  dvfsumlem3  25241  ftc2ditg  25259  coseq0negpitopi  25709  asinlem3  26070  atanlogaddlem  26112  atanlogadd  26113  ppiub  26401  dchrisum0  26717  pntrmax  26761  padicabv  26827  nacsfix  40729  acongrep  40998  hbt  41151  fzunt1d  41277
  Copyright terms: Public domain W3C validator