| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lecasei | Structured version Visualization version GIF version | ||
| Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
| Ref | Expression |
|---|---|
| lecase.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lecase.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lecase.3 | ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) |
| lecase.4 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| lecasei | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecase.3 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) | |
| 2 | lecase.4 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
| 3 | lecase.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | lecase.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letric 11274 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 7 | 1, 2, 6 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: wloglei 11710 nn2ge 12213 max0sub 13156 leabs 15265 max0add 15276 limsupgre 15447 ntrivcvgmul 15868 1arithlem4 16897 mndodcong 19472 metustto 24441 reconn 24717 dyaddisj 25497 volcn 25507 ditgcl 25759 ditgswap 25760 ditgsplit 25762 dvfsumlem3 25935 ftc2ditg 25953 coseq0negpitopi 26412 asinlem3 26781 atanlogaddlem 26823 atanlogadd 26824 ppiub 27115 dchrisum0 27431 pntrmax 27475 padicabv 27541 sgnval2 32658 oexpled 32772 nacsfix 42700 acongrep 42969 hbt 43119 fzunt1d 43446 |
| Copyright terms: Public domain | W3C validator |