Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lecasei | Structured version Visualization version GIF version |
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
Ref | Expression |
---|---|
lecase.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lecase.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lecase.3 | ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) |
lecase.4 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
lecasei | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lecase.3 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) | |
2 | lecase.4 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
3 | lecase.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | lecase.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letric 11125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
6 | 3, 4, 5 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
7 | 1, 2, 6 | mpjaodan 957 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 ∈ wcel 2104 class class class wbr 5081 ℝcr 10920 ≤ cle 11060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-pre-lttri 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 |
This theorem is referenced by: wloglei 11557 nn2ge 12050 max0sub 12980 leabs 15060 max0add 15071 limsupgre 15239 ntrivcvgmul 15663 1arithlem4 16676 mndodcong 19199 metustto 23758 reconn 24040 dyaddisj 24809 volcn 24819 ditgcl 25071 ditgswap 25072 ditgsplit 25074 dvfsumlem3 25241 ftc2ditg 25259 coseq0negpitopi 25709 asinlem3 26070 atanlogaddlem 26112 atanlogadd 26113 ppiub 26401 dchrisum0 26717 pntrmax 26761 padicabv 26827 nacsfix 40729 acongrep 40998 hbt 41151 fzunt1d 41277 |
Copyright terms: Public domain | W3C validator |