MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecasei Structured version   Visualization version   GIF version

Theorem lecasei 10433
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
Hypotheses
Ref Expression
lecase.1 (𝜑𝐴 ∈ ℝ)
lecase.2 (𝜑𝐵 ∈ ℝ)
lecase.3 ((𝜑𝐴𝐵) → 𝜓)
lecase.4 ((𝜑𝐵𝐴) → 𝜓)
Assertion
Ref Expression
lecasei (𝜑𝜓)

Proof of Theorem lecasei
StepHypRef Expression
1 lecase.3 . 2 ((𝜑𝐴𝐵) → 𝜓)
2 lecase.4 . 2 ((𝜑𝐵𝐴) → 𝜓)
3 lecase.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 lecase.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letric 10427 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
63, 4, 5syl2anc 580 . 2 (𝜑 → (𝐴𝐵𝐵𝐴))
71, 2, 6mpjaodan 982 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874  wcel 2157   class class class wbr 4843  cr 10223  cle 10364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-pre-lttri 10298
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369
This theorem is referenced by:  wloglei  10852  nn2ge  11341  max0sub  12276  leabs  14380  max0add  14391  limsupgre  14553  ntrivcvgmul  14971  1arithlem4  15963  mndodcong  18274  metustto  22686  reconn  22959  dyaddisj  23704  volcn  23714  ditgcl  23963  ditgswap  23964  ditgsplit  23966  dvfsumlem3  24132  ftc2ditg  24150  coseq0negpitopi  24597  asinlem3  24950  atanlogaddlem  24992  atanlogadd  24993  ppiub  25281  dchrisum0  25561  pntrmax  25605  padicabv  25671  nacsfix  38061  acongrep  38332  hbt  38485
  Copyright terms: Public domain W3C validator