![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bpos | Structured version Visualization version GIF version |
Description: Bertrand's postulate: there is a prime between 𝑁 and 2𝑁 for every positive integer 𝑁. This proof follows Erdős's method, for the most part, but with some refinements due to Shigenori Tochiori to save us some calculations of large primes. See http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate for an overview of the proof strategy. This is Metamath 100 proof #98. (Contributed by Mario Carneiro, 14-Mar-2014.) |
Ref | Expression |
---|---|
bpos | ⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bpos1 25464 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ≤ ;64) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) | |
2 | eqid 2778 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((((√‘2) · ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))‘(√‘𝑛))) + ((9 / 4) · ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛))))) = (𝑛 ∈ ℕ ↦ ((((√‘2) · ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))‘(√‘𝑛))) + ((9 / 4) · ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛))))) | |
3 | eqid 2778 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) | |
4 | simpll 757 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ ;64 < 𝑁) ∧ ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) → 𝑁 ∈ ℕ) | |
5 | simplr 759 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ ;64 < 𝑁) ∧ ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) → ;64 < 𝑁) | |
6 | simpr 479 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ ;64 < 𝑁) ∧ ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) | |
7 | 2, 3, 4, 5, 6 | bposlem9 25473 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ ;64 < 𝑁) ∧ ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) |
8 | 7 | pm2.18da 790 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ ;64 < 𝑁) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) |
9 | nnre 11386 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 6nn0 11669 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
11 | 4nn0 11667 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
12 | 10, 11 | deccl 11864 | . . . 4 ⊢ ;64 ∈ ℕ0 |
13 | 12 | nn0rei 11658 | . . 3 ⊢ ;64 ∈ ℝ |
14 | lelttric 10485 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ ;64 ∈ ℝ) → (𝑁 ≤ ;64 ∨ ;64 < 𝑁)) | |
15 | 9, 13, 14 | sylancl 580 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ ;64 ∨ ;64 < 𝑁)) |
16 | 1, 8, 15 | mpjaodan 944 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ 𝑝 ≤ (2 · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 836 ∈ wcel 2107 ∃wrex 3091 class class class wbr 4888 ↦ cmpt 4967 ‘cfv 6137 (class class class)co 6924 ℝcr 10273 + caddc 10277 · cmul 10279 < clt 10413 ≤ cle 10414 / cdiv 11034 ℕcn 11378 2c2 11434 4c4 11436 6c6 11438 9c9 11441 ;cdc 11849 ℝ+crp 12141 √csqrt 14384 ℙcprime 15794 logclog 24742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-xnn0 11719 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ioo 12495 df-ioc 12496 df-ico 12497 df-icc 12498 df-fz 12648 df-fzo 12789 df-fl 12916 df-mod 12992 df-seq 13124 df-exp 13183 df-fac 13383 df-bc 13412 df-hash 13440 df-shft 14218 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-limsup 14614 df-clim 14631 df-rlim 14632 df-sum 14829 df-ef 15204 df-e 15205 df-sin 15206 df-cos 15207 df-pi 15209 df-dvds 15392 df-gcd 15627 df-prm 15795 df-pc 15950 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-hom 16366 df-cco 16367 df-rest 16473 df-topn 16474 df-0g 16492 df-gsum 16493 df-topgen 16494 df-pt 16495 df-prds 16498 df-xrs 16552 df-qtop 16557 df-imas 16558 df-xps 16560 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-fbas 20143 df-fg 20144 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cld 21235 df-ntr 21236 df-cls 21237 df-nei 21314 df-lp 21352 df-perf 21353 df-cn 21443 df-cnp 21444 df-haus 21531 df-tx 21778 df-hmeo 21971 df-fil 22062 df-fm 22154 df-flim 22155 df-flf 22156 df-xms 22537 df-ms 22538 df-tms 22539 df-cncf 23093 df-limc 24071 df-dv 24072 df-log 24744 df-cxp 24745 df-cht 25279 df-ppi 25282 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |