Proof of Theorem jm2.24
Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝐴 ∈
(ℤ≥‘2)) |
2 | | peano2zm 12363 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
3 | 2 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝑁 − 1) ∈ ℤ) |
4 | | frmy 40736 |
. . . . . . 7
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
5 | 4 | fovcl 7402 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈
ℤ) |
6 | 1, 3, 5 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈
ℤ) |
7 | 6 | zred 12426 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈
ℝ) |
8 | 4 | fovcl 7402 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
9 | 8 | zred 12426 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ) |
10 | 9 | adantr 481 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 𝑁) ∈ ℝ) |
11 | 7, 10 | readdcld 11004 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ) |
12 | | 0red 10978 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ∈
ℝ) |
13 | | frmx 40735 |
. . . . . 6
⊢
Xrm :((ℤ≥‘2) ×
ℤ)⟶ℕ0 |
14 | 13 | fovcl 7402 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
15 | 14 | adantr 481 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
16 | 15 | nn0red 12294 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Xrm 𝑁) ∈ ℝ) |
17 | | znegcl 12355 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
18 | 17 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -𝑁 ∈ ℤ) |
19 | 18 | peano2zd 12429 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (-𝑁 + 1) ∈ ℤ) |
20 | 4 | fovcl 7402 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (-𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (-𝑁 + 1)) ∈
ℤ) |
21 | 1, 19, 20 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℤ) |
22 | 21 | zred 12426 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℝ) |
23 | 4 | fovcl 7402 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ) |
24 | 1, 18, 23 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) ∈ ℤ) |
25 | 24 | zred 12426 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) ∈ ℝ) |
26 | | rmy0 40751 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 Yrm 0) = 0) |
27 | 26 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) = 0) |
28 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ≤ 0) |
29 | | zre 12323 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
30 | 29 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ∈ ℝ) |
31 | 30 | le0neg1d 11546 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
32 | 28, 31 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ -𝑁) |
33 | | 0zd 12331 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ∈
ℤ) |
34 | | zleltp1 12371 |
. . . . . . . . . 10
⊢ ((0
∈ ℤ ∧ -𝑁
∈ ℤ) → (0 ≤ -𝑁 ↔ 0 < (-𝑁 + 1))) |
35 | 33, 18, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 ≤ -𝑁 ↔ 0 < (-𝑁 + 1))) |
36 | 32, 35 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < (-𝑁 + 1)) |
37 | | ltrmy 40774 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ (-𝑁 + 1) ∈ ℤ) → (0
< (-𝑁 + 1) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1)))) |
38 | 1, 33, 19, 37 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 < (-𝑁 + 1) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1)))) |
39 | 36, 38 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1))) |
40 | 27, 39 | eqbrtrrd 5098 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < (𝐴 Yrm (-𝑁 + 1))) |
41 | | lermy 40777 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (0 ≤
-𝑁 ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁))) |
42 | 1, 33, 18, 41 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 ≤ -𝑁 ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁))) |
43 | 32, 42 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁)) |
44 | 27, 43 | eqbrtrrd 5098 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ (𝐴 Yrm -𝑁)) |
45 | 22, 25, 40, 44 | addgtge0d 11549 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁))) |
46 | 7 | recnd 11003 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈
ℂ) |
47 | 10 | recnd 11003 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 𝑁) ∈ ℂ) |
48 | 46, 47 | negdid 11345 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) = (-(𝐴 Yrm (𝑁 − 1)) + -(𝐴 Yrm 𝑁))) |
49 | | rmyneg 40750 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm -(𝑁 − 1)) = -(𝐴 Yrm (𝑁 − 1))) |
50 | 1, 3, 49 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -(𝑁 − 1)) = -(𝐴 Yrm (𝑁 − 1))) |
51 | | rmyneg 40750 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)) |
52 | 51 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁)) |
53 | 50, 52 | oveq12d 7293 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm -(𝑁 − 1)) + (𝐴 Yrm -𝑁)) = (-(𝐴 Yrm (𝑁 − 1)) + -(𝐴 Yrm 𝑁))) |
54 | | zcn 12324 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
55 | 54 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ∈ ℂ) |
56 | | ax-1cn 10929 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
57 | | negsubdi 11277 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝑁 −
1) = (-𝑁 +
1)) |
58 | 55, 56, 57 | sylancl 586 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -(𝑁 − 1) = (-𝑁 + 1)) |
59 | 58 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -(𝑁 − 1)) = (𝐴 Yrm (-𝑁 + 1))) |
60 | 59 | oveq1d 7290 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm -(𝑁 − 1)) + (𝐴 Yrm -𝑁)) = ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁))) |
61 | 48, 53, 60 | 3eqtr2d 2784 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) = ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁))) |
62 | 45, 61 | breqtrrd 5102 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))) |
63 | 11 | lt0neg1d 11544 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < 0 ↔ 0 < -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
64 | 62, 63 | mpbird 256 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < 0) |
65 | 15 | nn0ge0d 12296 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ (𝐴 Xrm 𝑁)) |
66 | 11, 12, 16, 64, 65 | ltletrd 11135 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) |
67 | | simpll 764 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝐴 ∈
(ℤ≥‘2)) |
68 | | elnnz 12329 |
. . . . 5
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
69 | 68 | biimpri 227 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 0 <
𝑁) → 𝑁 ∈ ℕ) |
70 | 69 | adantll 711 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
71 | | jm2.24nn 40781 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) |
72 | 67, 70, 71 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) |
73 | 29 | adantl 482 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
74 | | 0re 10977 |
. . 3
⊢ 0 ∈
ℝ |
75 | | lelttric 11082 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 ≤ 0
∨ 0 < 𝑁)) |
76 | 73, 74, 75 | sylancl 586 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ∨ 0 < 𝑁)) |
77 | 66, 72, 76 | mpjaodan 956 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) |