Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24 Structured version   Visualization version   GIF version

Theorem jm2.24 39897
Description: Lemma 2.24 of [JonesMatijasevic] p. 697 extended to . Could be eliminated with a more careful proof of jm2.26lem3 39935. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))

Proof of Theorem jm2.24
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝐴 ∈ (ℤ‘2))
2 peano2zm 12017 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
32ad2antlr 726 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝑁 − 1) ∈ ℤ)
4 frmy 39848 . . . . . . 7 Yrm :((ℤ‘2) × ℤ)⟶ℤ
54fovcl 7262 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
61, 3, 5syl2anc 587 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
76zred 12079 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
84fovcl 7262 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
98zred 12079 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ)
109adantr 484 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 𝑁) ∈ ℝ)
117, 10readdcld 10663 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
12 0red 10637 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ∈ ℝ)
13 frmx 39847 . . . . . 6 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 7262 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1514adantr 484 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0red 11948 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Xrm 𝑁) ∈ ℝ)
17 znegcl 12009 . . . . . . . . . 10 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
1817ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -𝑁 ∈ ℤ)
1918peano2zd 12082 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (-𝑁 + 1) ∈ ℤ)
204fovcl 7262 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (-𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℤ)
211, 19, 20syl2anc 587 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℤ)
2221zred 12079 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℝ)
234fovcl 7262 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ)
241, 18, 23syl2anc 587 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) ∈ ℤ)
2524zred 12079 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) ∈ ℝ)
26 rmy0 39863 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
2726ad2antrr 725 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) = 0)
28 simpr 488 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ≤ 0)
29 zre 11977 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029ad2antlr 726 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ∈ ℝ)
3130le0neg1d 11204 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
3228, 31mpbid 235 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ -𝑁)
33 0zd 11985 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ∈ ℤ)
34 zleltp1 12025 . . . . . . . . . 10 ((0 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (0 ≤ -𝑁 ↔ 0 < (-𝑁 + 1)))
3533, 18, 34syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 ≤ -𝑁 ↔ 0 < (-𝑁 + 1)))
3632, 35mpbid 235 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < (-𝑁 + 1))
37 ltrmy 39886 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (-𝑁 + 1) ∈ ℤ) → (0 < (-𝑁 + 1) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1))))
381, 33, 19, 37syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 < (-𝑁 + 1) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1))))
3936, 38mpbid 235 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1)))
4027, 39eqbrtrrd 5057 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < (𝐴 Yrm (-𝑁 + 1)))
41 lermy 39889 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (0 ≤ -𝑁 ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁)))
421, 33, 18, 41syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 ≤ -𝑁 ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁)))
4332, 42mpbid 235 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁))
4427, 43eqbrtrrd 5057 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ (𝐴 Yrm -𝑁))
4522, 25, 40, 44addgtge0d 11207 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
467recnd 10662 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈ ℂ)
4710recnd 10662 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 𝑁) ∈ ℂ)
4846, 47negdid 11003 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) = (-(𝐴 Yrm (𝑁 − 1)) + -(𝐴 Yrm 𝑁)))
49 rmyneg 39862 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm -(𝑁 − 1)) = -(𝐴 Yrm (𝑁 − 1)))
501, 3, 49syl2anc 587 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -(𝑁 − 1)) = -(𝐴 Yrm (𝑁 − 1)))
51 rmyneg 39862 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))
5251adantr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))
5350, 52oveq12d 7157 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm -(𝑁 − 1)) + (𝐴 Yrm -𝑁)) = (-(𝐴 Yrm (𝑁 − 1)) + -(𝐴 Yrm 𝑁)))
54 zcn 11978 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5554ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ∈ ℂ)
56 ax-1cn 10588 . . . . . . . . 9 1 ∈ ℂ
57 negsubdi 10935 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 − 1) = (-𝑁 + 1))
5855, 56, 57sylancl 589 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -(𝑁 − 1) = (-𝑁 + 1))
5958oveq2d 7155 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -(𝑁 − 1)) = (𝐴 Yrm (-𝑁 + 1)))
6059oveq1d 7154 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm -(𝑁 − 1)) + (𝐴 Yrm -𝑁)) = ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
6148, 53, 603eqtr2d 2842 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) = ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
6245, 61breqtrrd 5061 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
6311lt0neg1d 11202 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < 0 ↔ 0 < -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6462, 63mpbird 260 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < 0)
6515nn0ge0d 11950 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ (𝐴 Xrm 𝑁))
6611, 12, 16, 64, 65ltletrd 10793 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
67 simpll 766 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝐴 ∈ (ℤ‘2))
68 elnnz 11983 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6968biimpri 231 . . . 4 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
7069adantll 713 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
71 jm2.24nn 39893 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
7267, 70, 71syl2anc 587 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
7329adantl 485 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
74 0re 10636 . . 3 0 ∈ ℝ
75 lelttric 10740 . . 3 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 ≤ 0 ∨ 0 < 𝑁))
7673, 74, 75sylancl 589 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ∨ 0 < 𝑁))
7766, 72, 76mpjaodan 956 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668  cle 10669  cmin 10863  -cneg 10864  cn 11629  2c2 11684  0cn0 11889  cz 11973  cuz 12235   Xrm crmx 39834   Yrm crmy 39835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-dvds 15604  df-gcd 15838  df-numer 16069  df-denom 16070  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152  df-squarenn 39775  df-pell1qr 39776  df-pell14qr 39777  df-pell1234qr 39778  df-pellfund 39779  df-rmx 39836  df-rmy 39837
This theorem is referenced by:  jm2.26lem3  39935
  Copyright terms: Public domain W3C validator