Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzospliti | Structured version Visualization version GIF version |
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzospliti | ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12024 | . . . . 5 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℝ) | |
2 | elfzoelz 13087 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | |
3 | 2 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ) |
4 | 3 | zred 12126 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℝ) |
5 | lelttric 10785 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) | |
6 | 1, 4, 5 | syl2an2 685 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) |
7 | 6 | orcomd 868 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴)) |
8 | elfzole1 13095 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐴) | |
9 | 8 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ≤ 𝐴) |
10 | 9 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → 𝐵 ≤ 𝐴)) |
11 | 10 | ancrd 555 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
12 | elfzolt2 13096 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶) | |
13 | 12 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶) |
14 | 13 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → 𝐴 < 𝐶)) |
15 | 14 | ancld 554 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
16 | 11, 15 | orim12d 962 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
17 | 7, 16 | mpd 15 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
18 | elfzoel1 13085 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
19 | 18 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ) |
20 | simpr 488 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
21 | elfzo 13089 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) | |
22 | 3, 19, 20, 21 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
23 | elfzoel2 13086 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
24 | 23 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ) |
25 | elfzo 13089 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) | |
26 | 3, 20, 24, 25 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
27 | 22, 26 | orbi12d 916 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
28 | 17, 27 | mpbird 260 | 1 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 ℝcr 10574 < clt 10713 ≤ cle 10714 ℤcz 12020 ..^cfzo 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 |
This theorem is referenced by: fzosplit 13119 fzocatel 13150 ccatass 13989 ccatswrd 14077 ccatpfx 14110 revccat 14175 ccatco 14244 dfphi2 16166 prmgaplem7 16448 ccatf1 30747 cycpmco2 30926 |
Copyright terms: Public domain | W3C validator |