| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzospliti | Structured version Visualization version GIF version | ||
| Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzospliti | ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12493 | . . . . 5 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℝ) | |
| 2 | elfzoelz 13580 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ) |
| 4 | 3 | zred 12598 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 5 | lelttric 11241 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) | |
| 6 | 1, 4, 5 | syl2an2 686 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) |
| 7 | 6 | orcomd 871 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴)) |
| 8 | elfzole1 13588 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐴) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ≤ 𝐴) |
| 10 | 9 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → 𝐵 ≤ 𝐴)) |
| 11 | 10 | ancrd 551 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
| 12 | elfzolt2 13589 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶) |
| 14 | 13 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → 𝐴 < 𝐶)) |
| 15 | 14 | ancld 550 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
| 16 | 11, 15 | orim12d 966 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
| 17 | 7, 16 | mpd 15 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
| 18 | elfzoel1 13578 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
| 21 | elfzo 13582 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) | |
| 22 | 3, 19, 20, 21 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
| 23 | elfzoel2 13579 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ) |
| 25 | elfzo 13582 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) | |
| 26 | 3, 20, 24, 25 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
| 27 | 22, 26 | orbi12d 918 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
| 28 | 17, 27 | mpbird 257 | 1 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 < clt 11168 ≤ cle 11169 ℤcz 12489 ..^cfzo 13575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 |
| This theorem is referenced by: fzosplit 13613 fzocatel 13650 ccatass 14513 ccatswrd 14593 ccatpfx 14625 revccat 14690 ccatco 14760 dfphi2 16703 prmgaplem7 16987 ccatf1 32903 cycpmco2 33088 gpgedgvtx1 48047 |
| Copyright terms: Public domain | W3C validator |