Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltlecasei | Structured version Visualization version GIF version |
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltlecasei.1 | ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) |
ltlecasei.2 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
ltlecasei.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltlecasei.4 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ltlecasei | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlecasei.2 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
2 | ltlecasei.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) | |
3 | ltlecasei.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltlecasei.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | lelttric 11012 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) |
7 | 1, 2, 6 | mpjaodan 955 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-xr 10944 df-le 10946 |
This theorem is referenced by: iccsplit 13146 expnbnd 13875 hashf1 14099 absmax 14969 sinltx 15826 iccntr 23890 pmltpclem2 24518 cniccbdd 24530 iccvolcl 24636 ioovolcl 24639 dyaddisjlem 24664 mbfposr 24721 itg1ge0a 24781 itg2monolem1 24820 itgioo 24885 c1lip1 25066 plyeq0lem 25276 aalioulem5 25401 pserulm 25486 tanord 25599 birthdaylem3 26008 fsumharmonic 26066 chpo1ubb 26534 mblfinlem2 35742 metakunt9 40061 ioodvbdlimc1 43364 ioodvbdlimc2 43366 ibliooicc 43402 fourierdlem107 43644 |
Copyright terms: Public domain | W3C validator |