MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlecasei Structured version   Visualization version   GIF version

Theorem ltlecasei 11343
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltlecasei.1 ((𝜑𝐴 < 𝐵) → 𝜓)
ltlecasei.2 ((𝜑𝐵𝐴) → 𝜓)
ltlecasei.3 (𝜑𝐴 ∈ ℝ)
ltlecasei.4 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
ltlecasei (𝜑𝜓)

Proof of Theorem ltlecasei
StepHypRef Expression
1 ltlecasei.2 . 2 ((𝜑𝐵𝐴) → 𝜓)
2 ltlecasei.1 . 2 ((𝜑𝐴 < 𝐵) → 𝜓)
3 ltlecasei.4 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltlecasei.3 . . 3 (𝜑𝐴 ∈ ℝ)
5 lelttric 11342 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐴 < 𝐵))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐵𝐴𝐴 < 𝐵))
71, 2, 6mpjaodan 960 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2108   class class class wbr 5119  cr 11128   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-xr 11273  df-le 11275
This theorem is referenced by:  iccsplit  13502  expnbnd  14250  hashf1  14475  absmax  15348  sinltx  16207  iccntr  24761  pmltpclem2  25402  cniccbdd  25414  iccvolcl  25520  ioovolcl  25523  dyaddisjlem  25548  mbfposr  25605  itg1ge0a  25664  itg2monolem1  25703  itgioo  25769  c1lip1  25954  plyeq0lem  26167  aalioulem5  26296  pserulm  26383  tanord  26499  birthdaylem3  26915  fsumharmonic  26974  chpo1ubb  27444  cos9thpiminplylem1  33816  mblfinlem2  37682  metakunt9  42226  ioodvbdlimc1  45962  ioodvbdlimc2  45964  ibliooicc  46000  fourierdlem107  46242
  Copyright terms: Public domain W3C validator