| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltlecasei | Structured version Visualization version GIF version | ||
| Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltlecasei.1 | ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) |
| ltlecasei.2 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
| ltlecasei.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltlecasei.4 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltlecasei | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlecasei.2 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
| 2 | ltlecasei.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) | |
| 3 | ltlecasei.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltlecasei.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | lelttric 11288 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) |
| 7 | 1, 2, 6 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-xr 11219 df-le 11221 |
| This theorem is referenced by: iccsplit 13453 expnbnd 14204 hashf1 14429 absmax 15303 sinltx 16164 iccntr 24717 pmltpclem2 25357 cniccbdd 25369 iccvolcl 25475 ioovolcl 25478 dyaddisjlem 25503 mbfposr 25560 itg1ge0a 25619 itg2monolem1 25658 itgioo 25724 c1lip1 25909 plyeq0lem 26122 aalioulem5 26251 pserulm 26338 tanord 26454 birthdaylem3 26870 fsumharmonic 26929 chpo1ubb 27399 cos9thpiminplylem1 33779 mblfinlem2 37659 ioodvbdlimc1 45938 ioodvbdlimc2 45940 ibliooicc 45976 fourierdlem107 46218 |
| Copyright terms: Public domain | W3C validator |