MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlecasei Structured version   Visualization version   GIF version

Theorem ltlecasei 11242
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltlecasei.1 ((𝜑𝐴 < 𝐵) → 𝜓)
ltlecasei.2 ((𝜑𝐵𝐴) → 𝜓)
ltlecasei.3 (𝜑𝐴 ∈ ℝ)
ltlecasei.4 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
ltlecasei (𝜑𝜓)

Proof of Theorem ltlecasei
StepHypRef Expression
1 ltlecasei.2 . 2 ((𝜑𝐵𝐴) → 𝜓)
2 ltlecasei.1 . 2 ((𝜑𝐴 < 𝐵) → 𝜓)
3 ltlecasei.4 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltlecasei.3 . . 3 (𝜑𝐴 ∈ ℝ)
5 lelttric 11241 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐴 < 𝐵))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐵𝐴𝐴 < 𝐵))
71, 2, 6mpjaodan 960 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2109   class class class wbr 5095  cr 11027   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-xr 11172  df-le 11174
This theorem is referenced by:  iccsplit  13406  expnbnd  14157  hashf1  14382  absmax  15255  sinltx  16116  iccntr  24726  pmltpclem2  25366  cniccbdd  25378  iccvolcl  25484  ioovolcl  25487  dyaddisjlem  25512  mbfposr  25569  itg1ge0a  25628  itg2monolem1  25667  itgioo  25733  c1lip1  25918  plyeq0lem  26131  aalioulem5  26260  pserulm  26347  tanord  26463  birthdaylem3  26879  fsumharmonic  26938  chpo1ubb  27408  cos9thpiminplylem1  33751  mblfinlem2  37640  ioodvbdlimc1  45918  ioodvbdlimc2  45920  ibliooicc  45956  fourierdlem107  46198
  Copyright terms: Public domain W3C validator