![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltlecasei | Structured version Visualization version GIF version |
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltlecasei.1 | ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) |
ltlecasei.2 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
ltlecasei.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltlecasei.4 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
ltlecasei | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlecasei.2 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
2 | ltlecasei.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) | |
3 | ltlecasei.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltlecasei.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | lelttric 11397 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) |
7 | 1, 2, 6 | mpjaodan 959 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-xr 11328 df-le 11330 |
This theorem is referenced by: iccsplit 13545 expnbnd 14281 hashf1 14506 absmax 15378 sinltx 16237 iccntr 24862 pmltpclem2 25503 cniccbdd 25515 iccvolcl 25621 ioovolcl 25624 dyaddisjlem 25649 mbfposr 25706 itg1ge0a 25766 itg2monolem1 25805 itgioo 25871 c1lip1 26056 plyeq0lem 26269 aalioulem5 26396 pserulm 26483 tanord 26598 birthdaylem3 27014 fsumharmonic 27073 chpo1ubb 27543 mblfinlem2 37618 metakunt9 42170 ioodvbdlimc1 45854 ioodvbdlimc2 45856 ibliooicc 45892 fourierdlem107 46134 |
Copyright terms: Public domain | W3C validator |