MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlecasei Structured version   Visualization version   GIF version

Theorem ltlecasei 11083
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltlecasei.1 ((𝜑𝐴 < 𝐵) → 𝜓)
ltlecasei.2 ((𝜑𝐵𝐴) → 𝜓)
ltlecasei.3 (𝜑𝐴 ∈ ℝ)
ltlecasei.4 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
ltlecasei (𝜑𝜓)

Proof of Theorem ltlecasei
StepHypRef Expression
1 ltlecasei.2 . 2 ((𝜑𝐵𝐴) → 𝜓)
2 ltlecasei.1 . 2 ((𝜑𝐴 < 𝐵) → 𝜓)
3 ltlecasei.4 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltlecasei.3 . . 3 (𝜑𝐴 ∈ ℝ)
5 lelttric 11082 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐴 < 𝐵))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐵𝐴𝐴 < 𝐵))
71, 2, 6mpjaodan 956 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  wcel 2106   class class class wbr 5074  cr 10870   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-xr 11013  df-le 11015
This theorem is referenced by:  iccsplit  13217  expnbnd  13947  hashf1  14171  absmax  15041  sinltx  15898  iccntr  23984  pmltpclem2  24613  cniccbdd  24625  iccvolcl  24731  ioovolcl  24734  dyaddisjlem  24759  mbfposr  24816  itg1ge0a  24876  itg2monolem1  24915  itgioo  24980  c1lip1  25161  plyeq0lem  25371  aalioulem5  25496  pserulm  25581  tanord  25694  birthdaylem3  26103  fsumharmonic  26161  chpo1ubb  26629  mblfinlem2  35815  metakunt9  40133  ioodvbdlimc1  43474  ioodvbdlimc2  43476  ibliooicc  43512  fourierdlem107  43754
  Copyright terms: Public domain W3C validator