| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltlecasei | Structured version Visualization version GIF version | ||
| Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltlecasei.1 | ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) |
| ltlecasei.2 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
| ltlecasei.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltlecasei.4 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltlecasei | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlecasei.2 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
| 2 | ltlecasei.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) | |
| 3 | ltlecasei.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltlecasei.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | lelttric 11241 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) |
| 7 | 1, 2, 6 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-xr 11172 df-le 11174 |
| This theorem is referenced by: iccsplit 13406 expnbnd 14157 hashf1 14382 absmax 15255 sinltx 16116 iccntr 24726 pmltpclem2 25366 cniccbdd 25378 iccvolcl 25484 ioovolcl 25487 dyaddisjlem 25512 mbfposr 25569 itg1ge0a 25628 itg2monolem1 25667 itgioo 25733 c1lip1 25918 plyeq0lem 26131 aalioulem5 26260 pserulm 26347 tanord 26463 birthdaylem3 26879 fsumharmonic 26938 chpo1ubb 27408 cos9thpiminplylem1 33751 mblfinlem2 37640 ioodvbdlimc1 45918 ioodvbdlimc2 45920 ibliooicc 45956 fourierdlem107 46198 |
| Copyright terms: Public domain | W3C validator |