| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltlecasei | Structured version Visualization version GIF version | ||
| Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltlecasei.1 | ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) |
| ltlecasei.2 | ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) |
| ltlecasei.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltlecasei.4 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltlecasei | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlecasei.2 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) | |
| 2 | ltlecasei.1 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) | |
| 3 | ltlecasei.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltlecasei.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | lelttric 11220 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵)) |
| 7 | 1, 2, 6 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-xr 11150 df-le 11152 |
| This theorem is referenced by: iccsplit 13385 expnbnd 14139 hashf1 14364 absmax 15237 sinltx 16098 iccntr 24738 pmltpclem2 25378 cniccbdd 25390 iccvolcl 25496 ioovolcl 25499 dyaddisjlem 25524 mbfposr 25581 itg1ge0a 25640 itg2monolem1 25679 itgioo 25745 c1lip1 25930 plyeq0lem 26143 aalioulem5 26272 pserulm 26359 tanord 26475 birthdaylem3 26891 fsumharmonic 26950 chpo1ubb 27420 cos9thpiminplylem1 33793 mblfinlem2 37704 ioodvbdlimc1 45977 ioodvbdlimc2 45979 ibliooicc 46015 fourierdlem107 46257 |
| Copyright terms: Public domain | W3C validator |