Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval Structured version   Visualization version   GIF version

Theorem lkrval 39088
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrval ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))

Proof of Theorem lkrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lkrfval.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval.o . . . 4 0 = (0g𝐷)
3 lkrfval.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrfval 39087 . . 3 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
65fveq1d 6863 . 2 (𝑊𝑋 → (𝐾𝐺) = ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺))
7 cnvexg 7903 . . . 4 (𝐺𝐹𝐺 ∈ V)
8 imaexg 7892 . . . 4 (𝐺 ∈ V → (𝐺 “ { 0 }) ∈ V)
97, 8syl 17 . . 3 (𝐺𝐹 → (𝐺 “ { 0 }) ∈ V)
10 cnveq 5840 . . . . 5 (𝑓 = 𝐺𝑓 = 𝐺)
1110imaeq1d 6033 . . . 4 (𝑓 = 𝐺 → (𝑓 “ { 0 }) = (𝐺 “ { 0 }))
12 eqid 2730 . . . 4 (𝑓𝐹 ↦ (𝑓 “ { 0 })) = (𝑓𝐹 ↦ (𝑓 “ { 0 }))
1311, 12fvmptg 6969 . . 3 ((𝐺𝐹 ∧ (𝐺 “ { 0 }) ∈ V) → ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺) = (𝐺 “ { 0 }))
149, 13mpdan 687 . 2 (𝐺𝐹 → ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺) = (𝐺 “ { 0 }))
156, 14sylan9eq 2785 1 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cmpt 5191  ccnv 5640  cima 5644  cfv 6514  Scalarcsca 17230  0gc0g 17409  LFnlclfn 39057  LKerclk 39085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-lkr 39086
This theorem is referenced by:  ellkr  39089  lkr0f  39094
  Copyright terms: Public domain W3C validator