![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval | Structured version Visualization version GIF version |
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval.d | β’ π· = (Scalarβπ) |
lkrfval.o | β’ 0 = (0gβπ·) |
lkrfval.f | β’ πΉ = (LFnlβπ) |
lkrfval.k | β’ πΎ = (LKerβπ) |
Ref | Expression |
---|---|
lkrval | β’ ((π β π β§ πΊ β πΉ) β (πΎβπΊ) = (β‘πΊ β { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrfval.d | . . . 4 β’ π· = (Scalarβπ) | |
2 | lkrfval.o | . . . 4 β’ 0 = (0gβπ·) | |
3 | lkrfval.f | . . . 4 β’ πΉ = (LFnlβπ) | |
4 | lkrfval.k | . . . 4 β’ πΎ = (LKerβπ) | |
5 | 1, 2, 3, 4 | lkrfval 38262 | . . 3 β’ (π β π β πΎ = (π β πΉ β¦ (β‘π β { 0 }))) |
6 | 5 | fveq1d 6894 | . 2 β’ (π β π β (πΎβπΊ) = ((π β πΉ β¦ (β‘π β { 0 }))βπΊ)) |
7 | cnvexg 7919 | . . . 4 β’ (πΊ β πΉ β β‘πΊ β V) | |
8 | imaexg 7910 | . . . 4 β’ (β‘πΊ β V β (β‘πΊ β { 0 }) β V) | |
9 | 7, 8 | syl 17 | . . 3 β’ (πΊ β πΉ β (β‘πΊ β { 0 }) β V) |
10 | cnveq 5874 | . . . . 5 β’ (π = πΊ β β‘π = β‘πΊ) | |
11 | 10 | imaeq1d 6059 | . . . 4 β’ (π = πΊ β (β‘π β { 0 }) = (β‘πΊ β { 0 })) |
12 | eqid 2730 | . . . 4 β’ (π β πΉ β¦ (β‘π β { 0 })) = (π β πΉ β¦ (β‘π β { 0 })) | |
13 | 11, 12 | fvmptg 6997 | . . 3 β’ ((πΊ β πΉ β§ (β‘πΊ β { 0 }) β V) β ((π β πΉ β¦ (β‘π β { 0 }))βπΊ) = (β‘πΊ β { 0 })) |
14 | 9, 13 | mpdan 683 | . 2 β’ (πΊ β πΉ β ((π β πΉ β¦ (β‘π β { 0 }))βπΊ) = (β‘πΊ β { 0 })) |
15 | 6, 14 | sylan9eq 2790 | 1 β’ ((π β π β§ πΊ β πΉ) β (πΎβπΊ) = (β‘πΊ β { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 Vcvv 3472 {csn 4629 β¦ cmpt 5232 β‘ccnv 5676 β cima 5680 βcfv 6544 Scalarcsca 17206 0gc0g 17391 LFnlclfn 38232 LKerclk 38260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-lkr 38261 |
This theorem is referenced by: ellkr 38264 lkr0f 38269 |
Copyright terms: Public domain | W3C validator |