| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval | Structured version Visualization version GIF version | ||
| Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lkrfval.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrval | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrfval.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lkrfval.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 3 | lkrfval.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 4 | lkrfval.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 5 | 1, 2, 3, 4 | lkrfval 39080 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 6 | 5 | fveq1d 6860 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐾‘𝐺) = ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺)) |
| 7 | cnvexg 7900 | . . . 4 ⊢ (𝐺 ∈ 𝐹 → ◡𝐺 ∈ V) | |
| 8 | imaexg 7889 | . . . 4 ⊢ (◡𝐺 ∈ V → (◡𝐺 “ { 0 }) ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (◡𝐺 “ { 0 }) ∈ V) |
| 10 | cnveq 5837 | . . . . 5 ⊢ (𝑓 = 𝐺 → ◡𝑓 = ◡𝐺) | |
| 11 | 10 | imaeq1d 6030 | . . . 4 ⊢ (𝑓 = 𝐺 → (◡𝑓 “ { 0 }) = (◡𝐺 “ { 0 })) |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 })) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 })) | |
| 13 | 11, 12 | fvmptg 6966 | . . 3 ⊢ ((𝐺 ∈ 𝐹 ∧ (◡𝐺 “ { 0 }) ∈ V) → ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺) = (◡𝐺 “ { 0 })) |
| 14 | 9, 13 | mpdan 687 | . 2 ⊢ (𝐺 ∈ 𝐹 → ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺) = (◡𝐺 “ { 0 })) |
| 15 | 6, 14 | sylan9eq 2784 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 Scalarcsca 17223 0gc0g 17402 LFnlclfn 39050 LKerclk 39078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-lkr 39079 |
| This theorem is referenced by: ellkr 39082 lkr0f 39087 |
| Copyright terms: Public domain | W3C validator |