| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval | Structured version Visualization version GIF version | ||
| Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lkrfval.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrval | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrfval.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lkrfval.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 3 | lkrfval.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 4 | lkrfval.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 5 | 1, 2, 3, 4 | lkrfval 39207 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 6 | 5 | fveq1d 6830 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐾‘𝐺) = ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺)) |
| 7 | cnvexg 7860 | . . . 4 ⊢ (𝐺 ∈ 𝐹 → ◡𝐺 ∈ V) | |
| 8 | imaexg 7849 | . . . 4 ⊢ (◡𝐺 ∈ V → (◡𝐺 “ { 0 }) ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (◡𝐺 “ { 0 }) ∈ V) |
| 10 | cnveq 5817 | . . . . 5 ⊢ (𝑓 = 𝐺 → ◡𝑓 = ◡𝐺) | |
| 11 | 10 | imaeq1d 6012 | . . . 4 ⊢ (𝑓 = 𝐺 → (◡𝑓 “ { 0 }) = (◡𝐺 “ { 0 })) |
| 12 | eqid 2733 | . . . 4 ⊢ (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 })) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 })) | |
| 13 | 11, 12 | fvmptg 6933 | . . 3 ⊢ ((𝐺 ∈ 𝐹 ∧ (◡𝐺 “ { 0 }) ∈ V) → ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺) = (◡𝐺 “ { 0 })) |
| 14 | 9, 13 | mpdan 687 | . 2 ⊢ (𝐺 ∈ 𝐹 → ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺) = (◡𝐺 “ { 0 })) |
| 15 | 6, 14 | sylan9eq 2788 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 ‘cfv 6486 Scalarcsca 17166 0gc0g 17345 LFnlclfn 39177 LKerclk 39205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-lkr 39206 |
| This theorem is referenced by: ellkr 39209 lkr0f 39214 |
| Copyright terms: Public domain | W3C validator |