Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval | Structured version Visualization version GIF version |
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval.o | ⊢ 0 = (0g‘𝐷) |
lkrfval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrval | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrfval.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | lkrfval.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
3 | lkrfval.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
4 | lkrfval.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
5 | 1, 2, 3, 4 | lkrfval 37101 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
6 | 5 | fveq1d 6776 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐾‘𝐺) = ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺)) |
7 | cnvexg 7771 | . . . 4 ⊢ (𝐺 ∈ 𝐹 → ◡𝐺 ∈ V) | |
8 | imaexg 7762 | . . . 4 ⊢ (◡𝐺 ∈ V → (◡𝐺 “ { 0 }) ∈ V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (◡𝐺 “ { 0 }) ∈ V) |
10 | cnveq 5782 | . . . . 5 ⊢ (𝑓 = 𝐺 → ◡𝑓 = ◡𝐺) | |
11 | 10 | imaeq1d 5968 | . . . 4 ⊢ (𝑓 = 𝐺 → (◡𝑓 “ { 0 }) = (◡𝐺 “ { 0 })) |
12 | eqid 2738 | . . . 4 ⊢ (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 })) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 })) | |
13 | 11, 12 | fvmptg 6873 | . . 3 ⊢ ((𝐺 ∈ 𝐹 ∧ (◡𝐺 “ { 0 }) ∈ V) → ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺) = (◡𝐺 “ { 0 })) |
14 | 9, 13 | mpdan 684 | . 2 ⊢ (𝐺 ∈ 𝐹 → ((𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))‘𝐺) = (◡𝐺 “ { 0 })) |
15 | 6, 14 | sylan9eq 2798 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 Scalarcsca 16965 0gc0g 17150 LFnlclfn 37071 LKerclk 37099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-lkr 37100 |
This theorem is referenced by: ellkr 37103 lkr0f 37108 |
Copyright terms: Public domain | W3C validator |