Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval Structured version   Visualization version   GIF version

Theorem lkrval 36839
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrval ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))

Proof of Theorem lkrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lkrfval.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval.o . . . 4 0 = (0g𝐷)
3 lkrfval.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrfval 36838 . . 3 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
65fveq1d 6719 . 2 (𝑊𝑋 → (𝐾𝐺) = ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺))
7 cnvexg 7702 . . . 4 (𝐺𝐹𝐺 ∈ V)
8 imaexg 7693 . . . 4 (𝐺 ∈ V → (𝐺 “ { 0 }) ∈ V)
97, 8syl 17 . . 3 (𝐺𝐹 → (𝐺 “ { 0 }) ∈ V)
10 cnveq 5742 . . . . 5 (𝑓 = 𝐺𝑓 = 𝐺)
1110imaeq1d 5928 . . . 4 (𝑓 = 𝐺 → (𝑓 “ { 0 }) = (𝐺 “ { 0 }))
12 eqid 2737 . . . 4 (𝑓𝐹 ↦ (𝑓 “ { 0 })) = (𝑓𝐹 ↦ (𝑓 “ { 0 }))
1311, 12fvmptg 6816 . . 3 ((𝐺𝐹 ∧ (𝐺 “ { 0 }) ∈ V) → ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺) = (𝐺 “ { 0 }))
149, 13mpdan 687 . 2 (𝐺𝐹 → ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺) = (𝐺 “ { 0 }))
156, 14sylan9eq 2798 1 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  {csn 4541  cmpt 5135  ccnv 5550  cima 5554  cfv 6380  Scalarcsca 16805  0gc0g 16944  LFnlclfn 36808  LKerclk 36836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-lkr 36837
This theorem is referenced by:  ellkr  36840  lkr0f  36845
  Copyright terms: Public domain W3C validator