MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpghm Structured version   Visualization version   GIF version

Theorem pm2mpghm 22762
Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))

Proof of Theorem pm2mpghm
Dummy variables 𝑘 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpfo.b . 2 𝐵 = (Base‘𝐶)
2 pm2mpfo.l . 2 𝐿 = (Base‘𝑄)
3 eqid 2725 . 2 (+g𝐶) = (+g𝐶)
4 eqid 2725 . 2 (+g𝑄) = (+g𝑄)
5 pm2mpfo.p . . . 4 𝑃 = (Poly1𝑅)
6 pm2mpfo.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 22638 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringgrp 20190 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
97, 8syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
10 pm2mpfo.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
1110matring 22389 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
12 pm2mpfo.q . . . . 5 𝑄 = (Poly1𝐴)
1312ply1ring 22190 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
1411, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
15 ringgrp 20190 . . 3 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
1614, 15syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp)
17 pm2mpfo.m . . 3 = ( ·𝑠𝑄)
18 pm2mpfo.e . . 3 = (.g‘(mulGrp‘𝑄))
19 pm2mpfo.x . . 3 𝑋 = (var1𝐴)
20 pm2mpfo.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
215, 6, 1, 17, 18, 19, 10, 12, 20, 2pm2mpf 22744 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
22 ringmnd 20195 . . . . . . . . . . . . . 14 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
237, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
2423anim1i 613 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
25 3anass 1092 . . . . . . . . . . . 12 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
2624, 25sylibr 233 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵))
271, 3mndcl 18705 . . . . . . . . . . 11 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
296, 1decpmatval 22711 . . . . . . . . . 10 (((𝑎(+g𝐶)𝑏) ∈ 𝐵𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
3028, 29sylan 578 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
31 simplll 773 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin)
32 fvexd 6911 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V)
33 fvexd 6911 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V)
34 eqidd 2726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
35 eqidd 2726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
3631, 31, 32, 33, 34, 35offval22 8093 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
37 eqid 2725 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2725 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
39 simpllr 774 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
40 simprl 769 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
41 simprr 771 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
421eleq2i 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4342biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4443ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑎 ∈ (Base‘𝐶))
45 eqid 2725 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
466, 45matecl 22371 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4740, 41, 44, 46syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4847ex 411 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
4948adantrr 715 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
5049adantr 479 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
51503impib 1113 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
52 simpr 483 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
53523ad2ant1 1130 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
54 eqid 2725 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗))
5554, 45, 5, 37coe1fvalcl 22155 . . . . . . . . . . . . 13 (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5651, 53, 55syl2anc 582 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5710, 37, 38, 31, 39, 56matbas2d 22369 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴))
58 simprl 769 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
59 simprr 771 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
601eleq2i 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6160biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6261ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑏 ∈ (Base‘𝐶))
636, 45matecl 22371 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6458, 59, 62, 63syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6564ex 411 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6665adantrl 714 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6766adantr 479 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
68673impib 1113 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
69 eqid 2725 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗))
7069, 45, 5, 37coe1fvalcl 22155 . . . . . . . . . . . . 13 (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7168, 53, 70syl2anc 582 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7210, 37, 38, 31, 39, 71matbas2d 22369 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴))
73 eqid 2725 . . . . . . . . . . . 12 (+g𝐴) = (+g𝐴)
74 eqid 2725 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
7510, 38, 73, 74matplusg2 22373 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
7657, 72, 75syl2anc 582 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
77 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎𝐵𝑏𝐵))
7877anim1i 613 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
79783impb 1112 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
80 eqid 2725 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
816, 1, 3, 80matplusgcell 22379 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8279, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8382fveq2d 6900 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗))))
8483fveq1d 6898 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘))
85393ad2ant1 1130 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
865, 45, 80, 74coe1addfv 22209 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8785, 51, 68, 53, 86syl31anc 1370 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8884, 87eqtrd 2765 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8988mpoeq3dva 7497 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9036, 76, 893eqtr4rd 2776 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9112ply1sca 22195 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
9211, 91syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
9392ad2antrr 724 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
9493fveq2d 6900 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (+g𝐴) = (+g‘(Scalar‘𝑄)))
95 simprl 769 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
966, 1decpmatval 22711 . . . . . . . . . . . 12 ((𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9795, 96sylan 578 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9897eqcomd 2731 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘))
99 simprr 771 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
1006, 1decpmatval 22711 . . . . . . . . . . . 12 ((𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
10199, 100sylan 578 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
102101eqcomd 2731 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘))
10394, 98, 102oveq123d 7440 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
10430, 90, 1033eqtrd 2769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
105104oveq1d 7434 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)))
10612ply1lmod 22194 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
10711, 106syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
108107ad2antrr 724 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
109 simpl 481 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
110109ad2antlr 725 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎𝐵)
1115, 6, 1, 10, 38decpmatcl 22713 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11239, 110, 52, 111syl3anc 1368 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11392eqcomd 2731 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑄) = 𝐴)
114113ad2antrr 724 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
115114fveq2d 6900 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
116112, 115eleqtrrd 2828 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
117 simpr 483 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
118117ad2antlr 725 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏𝐵)
1195, 6, 1, 10, 38decpmatcl 22713 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
12039, 118, 52, 119syl3anc 1368 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
121120, 115eleqtrrd 2828 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
122 eqid 2725 . . . . . . . . . 10 (mulGrp‘𝑄) = (mulGrp‘𝑄)
123122, 2mgpbas 20092 . . . . . . . . 9 𝐿 = (Base‘(mulGrp‘𝑄))
124122ringmgp 20191 . . . . . . . . . . 11 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
12514, 124syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
126125ad2antrr 724 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
12719, 12, 2vr1cl 22160 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑋𝐿)
12811, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋𝐿)
129128ad2antrr 724 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐿)
130123, 18, 126, 52, 129mulgnn0cld 19058 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
131 eqid 2725 . . . . . . . . 9 (Scalar‘𝑄) = (Scalar‘𝑄)
132 eqid 2725 . . . . . . . . 9 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
133 eqid 2725 . . . . . . . . 9 (+g‘(Scalar‘𝑄)) = (+g‘(Scalar‘𝑄))
1342, 4, 131, 17, 132, 133lmodvsdir 20781 . . . . . . . 8 ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
135108, 116, 121, 130, 134syl13anc 1369 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
136105, 135eqtrd 2765 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
137136mpteq2dva 5249 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
138137oveq2d 7435 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
139 eqid 2725 . . . . 5 (0g𝑄) = (0g𝑄)
140 ringcmn 20230 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
14114, 140syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
142141adantr 479 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ CMnd)
143 nn0ex 12511 . . . . . 6 0 ∈ V
144143a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ℕ0 ∈ V)
145109anim2i 615 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
146 df-3an 1086 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
147145, 146sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵))
1485, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 22759 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
149147, 148sylan 578 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
150117anim2i 615 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
151 df-3an 1086 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
152150, 151sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵))
1535, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 22759 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
154152, 153sylan 578 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
155 eqidd 2726 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))
156 eqidd 2726 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
1575, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 22758 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
158147, 157syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1595, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 22758 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
160152, 159syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1612, 139, 4, 142, 144, 149, 154, 155, 156, 158, 160gsummptfsadd 19891 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
162138, 161eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
163 simpll 765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑁 ∈ Fin)
164 simplr 767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
1655, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22742 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
166163, 164, 28, 165syl3anc 1368 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
1675, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22742 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
168163, 164, 95, 167syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
1695, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22742 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
170163, 164, 99, 169syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
171168, 170oveq12d 7437 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑇𝑎)(+g𝑄)(𝑇𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
172162, 166, 1713eqtr4d 2775 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = ((𝑇𝑎)(+g𝑄)(𝑇𝑏)))
1731, 2, 3, 4, 9, 16, 21, 172isghmd 19188 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  cmpo 7421  f cof 7683  Fincfn 8964   finSupp cfsupp 9387  0cn0 12505  Basecbs 17183  +gcplusg 17236  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424   Σg cgsu 17425  Mndcmnd 18697  Grpcgrp 18898  .gcmg 19031   GrpHom cghm 19175  CMndccmn 19747  mulGrpcmgp 20086  Ringcrg 20185  LModclmod 20755  var1cv1 22118  Poly1cpl1 22119  coe1cco1 22120   Mat cmat 22351   decompPMat cdecpmat 22708   pMatToMatPoly cpm2mp 22738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-dsmm 21683  df-frlm 21698  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-mamu 22335  df-mat 22352  df-decpmat 22709  df-pm2mp 22739
This theorem is referenced by:  pm2mpgrpiso  22763  pm2mprhm  22767  pm2mp  22771
  Copyright terms: Public domain W3C validator