Step | Hyp | Ref
| Expression |
1 | | pm2mpfo.b |
. 2
⊢ 𝐵 = (Base‘𝐶) |
2 | | pm2mpfo.l |
. 2
⊢ 𝐿 = (Base‘𝑄) |
3 | | eqid 2739 |
. 2
⊢
(+g‘𝐶) = (+g‘𝐶) |
4 | | eqid 2739 |
. 2
⊢
(+g‘𝑄) = (+g‘𝑄) |
5 | | pm2mpfo.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
6 | | pm2mpfo.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
7 | 5, 6 | pmatring 21850 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
8 | | ringgrp 19797 |
. . 3
⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) |
9 | 7, 8 | syl 17 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp) |
10 | | pm2mpfo.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
11 | 10 | matring 21601 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
12 | | pm2mpfo.q |
. . . . 5
⊢ 𝑄 = (Poly1‘𝐴) |
13 | 12 | ply1ring 21428 |
. . . 4
⊢ (𝐴 ∈ Ring → 𝑄 ∈ Ring) |
14 | 11, 13 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) |
15 | | ringgrp 19797 |
. . 3
⊢ (𝑄 ∈ Ring → 𝑄 ∈ Grp) |
16 | 14, 15 | syl 17 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp) |
17 | | pm2mpfo.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝑄) |
18 | | pm2mpfo.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
19 | | pm2mpfo.x |
. . 3
⊢ 𝑋 = (var1‘𝐴) |
20 | | pm2mpfo.t |
. . 3
⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
21 | 5, 6, 1, 17, 18, 19, 10, 12, 20, 2 | pm2mpf 21956 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) |
22 | | ringmnd 19802 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ Ring → 𝐶 ∈ Mnd) |
23 | 7, 22 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd) |
24 | 23 | anim1i 615 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
25 | | 3anass 1094 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
26 | 24, 25 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) |
27 | 1, 3 | mndcl 18402 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐶)𝑏) ∈ 𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐶)𝑏) ∈ 𝐵) |
29 | 6, 1 | decpmatval 21923 |
. . . . . . . . . 10
⊢ (((𝑎(+g‘𝐶)𝑏) ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘))) |
30 | 28, 29 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘))) |
31 | | simplll 772 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin) |
32 | | fvexd 6798 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V) |
33 | | fvexd 6798 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V) |
34 | | eqidd 2740 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))) |
35 | | eqidd 2740 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
36 | 31, 31, 32, 33, 34, 35 | offval22 7937 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f
(+g‘𝑅)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
37 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
38 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(Base‘𝐴) =
(Base‘𝐴) |
39 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
40 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
41 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
42 | 1 | eleq2i 2831 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ (Base‘𝐶)) |
43 | 42 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝐶)) |
44 | 43 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑎 ∈ (Base‘𝐶)) |
45 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑃) =
(Base‘𝑃) |
46 | 6, 45 | matecl 21583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)) |
47 | 40, 41, 44, 46 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)) |
48 | 47 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))) |
49 | 48 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))) |
51 | 50 | 3impib 1115 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)) |
52 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
53 | 52 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ ℕ0) |
54 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗)) |
55 | 54, 45, 5, 37 | coe1fvalcl 21392 |
. . . . . . . . . . . . 13
⊢ (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅)) |
56 | 51, 53, 55 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅)) |
57 | 10, 37, 38, 31, 39, 56 | matbas2d 21581 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴)) |
58 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
59 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
60 | 1 | eleq2i 2831 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ (Base‘𝐶)) |
61 | 60 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ 𝐵 → 𝑏 ∈ (Base‘𝐶)) |
62 | 61 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑏 ∈ (Base‘𝐶)) |
63 | 6, 45 | matecl 21583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)) |
64 | 58, 59, 62, 63 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)) |
65 | 64 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))) |
66 | 65 | adantrl 713 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))) |
67 | 66 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))) |
68 | 67 | 3impib 1115 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)) |
69 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗)) |
70 | 69, 45, 5, 37 | coe1fvalcl 21392 |
. . . . . . . . . . . . 13
⊢ (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅)) |
71 | 68, 53, 70 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅)) |
72 | 10, 37, 38, 31, 39, 71 | matbas2d 21581 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) |
73 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(+g‘𝐴) = (+g‘𝐴) |
74 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(+g‘𝑅) = (+g‘𝑅) |
75 | 10, 38, 73, 74 | matplusg2 21585 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f
(+g‘𝑅)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
76 | 57, 72, 75 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f
(+g‘𝑅)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
77 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) |
78 | 77 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
79 | 78 | 3impb 1114 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
80 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑃) = (+g‘𝑃) |
81 | 6, 1, 3, 80 | matplusgcell 21591 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑎(+g‘𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗))) |
82 | 79, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑎(+g‘𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗))) |
83 | 82 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))) |
84 | 83 | fveq1d 6785 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))‘𝑘)) |
85 | 39 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
86 | 5, 45, 80, 74 | coe1addfv 21445 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) →
((coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
87 | 85, 51, 68, 53, 86 | syl31anc 1372 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
88 | 84, 87 | eqtrd 2779 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
89 | 88 | mpoeq3dva 7361 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
90 | 36, 76, 89 | 3eqtr4rd 2790 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
91 | 12 | ply1sca 21433 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄)) |
92 | 11, 91 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄)) |
93 | 92 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄)) |
94 | 93 | fveq2d 6787 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(+g‘𝐴) =
(+g‘(Scalar‘𝑄))) |
95 | | simprl 768 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
96 | 6, 1 | decpmatval 21923 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))) |
97 | 95, 96 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))) |
98 | 97 | eqcomd 2745 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘)) |
99 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
100 | 6, 1 | decpmatval 21923 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
101 | 99, 100 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
102 | 101 | eqcomd 2745 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘)) |
103 | 94, 98, 102 | oveq123d 7305 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘))) |
104 | 30, 90, 103 | 3eqtrd 2783 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘))) |
105 | 104 | oveq1d 7299 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) ∗ (𝑘 ↑ 𝑋))) |
106 | 12 | ply1lmod 21432 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Ring → 𝑄 ∈ LMod) |
107 | 11, 106 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod) |
108 | 107 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod) |
109 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
110 | 109 | ad2antlr 724 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ 𝐵) |
111 | 5, 6, 1, 10, 38 | decpmatcl 21925 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴)) |
112 | 39, 110, 52, 111 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴)) |
113 | 92 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Scalar‘𝑄) = 𝐴) |
114 | 113 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(Scalar‘𝑄) = 𝐴) |
115 | 114 | fveq2d 6787 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(Base‘(Scalar‘𝑄)) = (Base‘𝐴)) |
116 | 112, 115 | eleqtrrd 2843 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄))) |
117 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
118 | 117 | ad2antlr 724 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏 ∈ 𝐵) |
119 | 5, 6, 1, 10, 38 | decpmatcl 21925 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴)) |
120 | 39, 118, 52, 119 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴)) |
121 | 120, 115 | eleqtrrd 2843 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄))) |
122 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
123 | 122 | ringmgp 19798 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ Ring →
(mulGrp‘𝑄) ∈
Mnd) |
124 | 14, 123 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(mulGrp‘𝑄) ∈
Mnd) |
125 | 124 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝑄) ∈
Mnd) |
126 | 19, 12, 2 | vr1cl 21397 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ring → 𝑋 ∈ 𝐿) |
127 | 11, 126 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ 𝐿) |
128 | 127 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐿) |
129 | 122, 2 | mgpbas 19735 |
. . . . . . . . . 10
⊢ 𝐿 =
(Base‘(mulGrp‘𝑄)) |
130 | 129, 18 | mulgnn0cl 18729 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑄)
∈ Mnd ∧ 𝑘 ∈
ℕ0 ∧ 𝑋
∈ 𝐿) → (𝑘 ↑ 𝑋) ∈ 𝐿) |
131 | 125, 52, 128, 130 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐿) |
132 | | eqid 2739 |
. . . . . . . . 9
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
133 | | eqid 2739 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄)) |
134 | | eqid 2739 |
. . . . . . . . 9
⊢
(+g‘(Scalar‘𝑄)) =
(+g‘(Scalar‘𝑄)) |
135 | 2, 4, 132, 17, 133, 134 | lmodvsdir 20156 |
. . . . . . . 8
⊢ ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 ↑ 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
136 | 108, 116,
121, 131, 135 | syl13anc 1371 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
137 | 105, 136 | eqtrd 2779 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
138 | 137 | mpteq2dva 5175 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
139 | 138 | oveq2d 7300 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
140 | | eqid 2739 |
. . . . 5
⊢
(0g‘𝑄) = (0g‘𝑄) |
141 | | ringcmn 19829 |
. . . . . . 7
⊢ (𝑄 ∈ Ring → 𝑄 ∈ CMnd) |
142 | 14, 141 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd) |
143 | 142 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑄 ∈ CMnd) |
144 | | nn0ex 12248 |
. . . . . 6
⊢
ℕ0 ∈ V |
145 | 144 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ℕ0 ∈
V) |
146 | 109 | anim2i 617 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵)) |
147 | | df-3an 1088 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵)) |
148 | 146, 147 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵)) |
149 | 5, 6, 1, 17, 18, 19, 10, 12, 2 | pm2mpghmlem1 21971 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
150 | 148, 149 | sylan 580 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
151 | 117 | anim2i 617 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵)) |
152 | | df-3an 1088 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵)) |
153 | 151, 152 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵)) |
154 | 5, 6, 1, 17, 18, 19, 10, 12, 2 | pm2mpghmlem1 21971 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
155 | 153, 154 | sylan 580 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
156 | | eqidd 2740 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
157 | | eqidd 2740 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
158 | 5, 6, 1, 17, 18, 19, 10, 12 | pm2mpghmlem2 21970 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
159 | 148, 158 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
160 | 5, 6, 1, 17, 18, 19, 10, 12 | pm2mpghmlem2 21970 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
161 | 153, 160 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
162 | 2, 140, 4, 143, 145, 150, 155, 156, 157, 159, 161 | gsummptfsadd 19534 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))(+g‘𝑄)(𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
163 | 139, 162 | eqtrd 2779 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))(+g‘𝑄)(𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
164 | | simpll 764 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑁 ∈ Fin) |
165 | | simplr 766 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ Ring) |
166 | 5, 6, 1, 17, 18, 19, 10, 12, 20 | pm2mpfval 21954 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g‘𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g‘𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
167 | 164, 165,
28, 166 | syl3anc 1370 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘(𝑎(+g‘𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
168 | 5, 6, 1, 17, 18, 19, 10, 12, 20 | pm2mpfval 21954 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑇‘𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
169 | 164, 165,
95, 168 | syl3anc 1370 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
170 | 5, 6, 1, 17, 18, 19, 10, 12, 20 | pm2mpfval 21954 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) → (𝑇‘𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
171 | 164, 165,
99, 170 | syl3anc 1370 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
172 | 169, 171 | oveq12d 7302 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑇‘𝑎)(+g‘𝑄)(𝑇‘𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))(+g‘𝑄)(𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
173 | 163, 167,
172 | 3eqtr4d 2789 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘(𝑎(+g‘𝐶)𝑏)) = ((𝑇‘𝑎)(+g‘𝑄)(𝑇‘𝑏))) |
174 | 1, 2, 3, 4, 9, 16,
21, 173 | isghmd 18852 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄)) |