MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpghm Structured version   Visualization version   GIF version

Theorem pm2mpghm 22754
Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))

Proof of Theorem pm2mpghm
Dummy variables 𝑘 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpfo.b . 2 𝐵 = (Base‘𝐶)
2 pm2mpfo.l . 2 𝐿 = (Base‘𝑄)
3 eqid 2735 . 2 (+g𝐶) = (+g𝐶)
4 eqid 2735 . 2 (+g𝑄) = (+g𝑄)
5 pm2mpfo.p . . . 4 𝑃 = (Poly1𝑅)
6 pm2mpfo.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 22630 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringgrp 20198 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
97, 8syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
10 pm2mpfo.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
1110matring 22381 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
12 pm2mpfo.q . . . . 5 𝑄 = (Poly1𝐴)
1312ply1ring 22183 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
1411, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
15 ringgrp 20198 . . 3 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
1614, 15syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp)
17 pm2mpfo.m . . 3 = ( ·𝑠𝑄)
18 pm2mpfo.e . . 3 = (.g‘(mulGrp‘𝑄))
19 pm2mpfo.x . . 3 𝑋 = (var1𝐴)
20 pm2mpfo.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
215, 6, 1, 17, 18, 19, 10, 12, 20, 2pm2mpf 22736 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
22 ringmnd 20203 . . . . . . . . . . . . . 14 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
237, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
2423anim1i 615 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
25 3anass 1094 . . . . . . . . . . . 12 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
2624, 25sylibr 234 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵))
271, 3mndcl 18720 . . . . . . . . . . 11 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
296, 1decpmatval 22703 . . . . . . . . . 10 (((𝑎(+g𝐶)𝑏) ∈ 𝐵𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
3028, 29sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
31 simplll 774 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin)
32 fvexd 6891 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V)
33 fvexd 6891 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V)
34 eqidd 2736 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
35 eqidd 2736 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
3631, 31, 32, 33, 34, 35offval22 8087 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
37 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2735 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
39 simpllr 775 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
40 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
41 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
421eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4342biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4443ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑎 ∈ (Base‘𝐶))
45 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
466, 45matecl 22363 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4740, 41, 44, 46syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4847ex 412 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
4948adantrr 717 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
5049adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
51503impib 1116 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
52 simpr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
53523ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
54 eqid 2735 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗))
5554, 45, 5, 37coe1fvalcl 22148 . . . . . . . . . . . . 13 (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5651, 53, 55syl2anc 584 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5710, 37, 38, 31, 39, 56matbas2d 22361 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴))
58 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
59 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
601eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6160biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6261ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑏 ∈ (Base‘𝐶))
636, 45matecl 22363 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6458, 59, 62, 63syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6564ex 412 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6665adantrl 716 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6766adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
68673impib 1116 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
69 eqid 2735 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗))
7069, 45, 5, 37coe1fvalcl 22148 . . . . . . . . . . . . 13 (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7168, 53, 70syl2anc 584 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7210, 37, 38, 31, 39, 71matbas2d 22361 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴))
73 eqid 2735 . . . . . . . . . . . 12 (+g𝐴) = (+g𝐴)
74 eqid 2735 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
7510, 38, 73, 74matplusg2 22365 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
7657, 72, 75syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
77 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎𝐵𝑏𝐵))
7877anim1i 615 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
79783impb 1114 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
80 eqid 2735 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
816, 1, 3, 80matplusgcell 22371 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8279, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8382fveq2d 6880 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗))))
8483fveq1d 6878 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘))
85393ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
865, 45, 80, 74coe1addfv 22202 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8785, 51, 68, 53, 86syl31anc 1375 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8884, 87eqtrd 2770 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8988mpoeq3dva 7484 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9036, 76, 893eqtr4rd 2781 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9112ply1sca 22188 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
9211, 91syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
9392ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
9493fveq2d 6880 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (+g𝐴) = (+g‘(Scalar‘𝑄)))
95 simprl 770 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
966, 1decpmatval 22703 . . . . . . . . . . . 12 ((𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9795, 96sylan 580 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9897eqcomd 2741 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘))
99 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
1006, 1decpmatval 22703 . . . . . . . . . . . 12 ((𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
10199, 100sylan 580 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
102101eqcomd 2741 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘))
10394, 98, 102oveq123d 7426 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
10430, 90, 1033eqtrd 2774 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
105104oveq1d 7420 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)))
10612ply1lmod 22187 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
10711, 106syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
108107ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
109 simpl 482 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
110109ad2antlr 727 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎𝐵)
1115, 6, 1, 10, 38decpmatcl 22705 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11239, 110, 52, 111syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11392eqcomd 2741 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑄) = 𝐴)
114113ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
115114fveq2d 6880 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
116112, 115eleqtrrd 2837 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
117 simpr 484 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
118117ad2antlr 727 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏𝐵)
1195, 6, 1, 10, 38decpmatcl 22705 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
12039, 118, 52, 119syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
121120, 115eleqtrrd 2837 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
122 eqid 2735 . . . . . . . . . 10 (mulGrp‘𝑄) = (mulGrp‘𝑄)
123122, 2mgpbas 20105 . . . . . . . . 9 𝐿 = (Base‘(mulGrp‘𝑄))
124122ringmgp 20199 . . . . . . . . . . 11 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
12514, 124syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
126125ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
12719, 12, 2vr1cl 22153 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑋𝐿)
12811, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋𝐿)
129128ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐿)
130123, 18, 126, 52, 129mulgnn0cld 19078 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
131 eqid 2735 . . . . . . . . 9 (Scalar‘𝑄) = (Scalar‘𝑄)
132 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
133 eqid 2735 . . . . . . . . 9 (+g‘(Scalar‘𝑄)) = (+g‘(Scalar‘𝑄))
1342, 4, 131, 17, 132, 133lmodvsdir 20843 . . . . . . . 8 ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
135108, 116, 121, 130, 134syl13anc 1374 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
136105, 135eqtrd 2770 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
137136mpteq2dva 5214 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
138137oveq2d 7421 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
139 eqid 2735 . . . . 5 (0g𝑄) = (0g𝑄)
140 ringcmn 20242 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
14114, 140syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
142141adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ CMnd)
143 nn0ex 12507 . . . . . 6 0 ∈ V
144143a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ℕ0 ∈ V)
145109anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
146 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
147145, 146sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵))
1485, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 22751 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
149147, 148sylan 580 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
150117anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
151 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
152150, 151sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵))
1535, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 22751 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
154152, 153sylan 580 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
155 eqidd 2736 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))
156 eqidd 2736 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
1575, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 22750 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
158147, 157syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1595, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 22750 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
160152, 159syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1612, 139, 4, 142, 144, 149, 154, 155, 156, 158, 160gsummptfsadd 19905 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
162138, 161eqtrd 2770 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
163 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑁 ∈ Fin)
164 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
1655, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22734 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
166163, 164, 28, 165syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
1675, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22734 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
168163, 164, 95, 167syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
1695, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22734 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
170163, 164, 99, 169syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
171168, 170oveq12d 7423 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑇𝑎)(+g𝑄)(𝑇𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
172162, 166, 1713eqtr4d 2780 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = ((𝑇𝑎)(+g𝑄)(𝑇𝑏)))
1731, 2, 3, 4, 9, 16, 21, 172isghmd 19208 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cmpo 7407  f cof 7669  Fincfn 8959   finSupp cfsupp 9373  0cn0 12501  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  Grpcgrp 18916  .gcmg 19050   GrpHom cghm 19195  CMndccmn 19761  mulGrpcmgp 20100  Ringcrg 20193  LModclmod 20817  var1cv1 22111  Poly1cpl1 22112  coe1cco1 22113   Mat cmat 22345   decompPMat cdecpmat 22700   pMatToMatPoly cpm2mp 22730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mamu 22329  df-mat 22346  df-decpmat 22701  df-pm2mp 22731
This theorem is referenced by:  pm2mpgrpiso  22755  pm2mprhm  22759  pm2mp  22763
  Copyright terms: Public domain W3C validator