| Step | Hyp | Ref
| Expression |
| 1 | | pm2mpfo.b |
. 2
⊢ 𝐵 = (Base‘𝐶) |
| 2 | | pm2mpfo.l |
. 2
⊢ 𝐿 = (Base‘𝑄) |
| 3 | | eqid 2737 |
. 2
⊢
(+g‘𝐶) = (+g‘𝐶) |
| 4 | | eqid 2737 |
. 2
⊢
(+g‘𝑄) = (+g‘𝑄) |
| 5 | | pm2mpfo.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 6 | | pm2mpfo.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 7 | 5, 6 | pmatring 22698 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
| 8 | | ringgrp 20235 |
. . 3
⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) |
| 9 | 7, 8 | syl 17 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp) |
| 10 | | pm2mpfo.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 11 | 10 | matring 22449 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 12 | | pm2mpfo.q |
. . . . 5
⊢ 𝑄 = (Poly1‘𝐴) |
| 13 | 12 | ply1ring 22249 |
. . . 4
⊢ (𝐴 ∈ Ring → 𝑄 ∈ Ring) |
| 14 | 11, 13 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) |
| 15 | | ringgrp 20235 |
. . 3
⊢ (𝑄 ∈ Ring → 𝑄 ∈ Grp) |
| 16 | 14, 15 | syl 17 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp) |
| 17 | | pm2mpfo.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝑄) |
| 18 | | pm2mpfo.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
| 19 | | pm2mpfo.x |
. . 3
⊢ 𝑋 = (var1‘𝐴) |
| 20 | | pm2mpfo.t |
. . 3
⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
| 21 | 5, 6, 1, 17, 18, 19, 10, 12, 20, 2 | pm2mpf 22804 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) |
| 22 | | ringmnd 20240 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ Ring → 𝐶 ∈ Mnd) |
| 23 | 7, 22 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd) |
| 24 | 23 | anim1i 615 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
| 25 | | 3anass 1095 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
| 26 | 24, 25 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) |
| 27 | 1, 3 | mndcl 18755 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝐶)𝑏) ∈ 𝐵) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝐶)𝑏) ∈ 𝐵) |
| 29 | 6, 1 | decpmatval 22771 |
. . . . . . . . . 10
⊢ (((𝑎(+g‘𝐶)𝑏) ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘))) |
| 30 | 28, 29 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘))) |
| 31 | | simplll 775 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 32 | | fvexd 6921 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V) |
| 33 | | fvexd 6921 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V) |
| 34 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))) |
| 35 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
| 36 | 31, 31, 32, 33, 34, 35 | offval22 8113 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f
(+g‘𝑅)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
| 37 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 38 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 39 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 40 | | simprl 771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 41 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 42 | 1 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ (Base‘𝐶)) |
| 43 | 42 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝐶)) |
| 44 | 43 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑎 ∈ (Base‘𝐶)) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 46 | 6, 45 | matecl 22431 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)) |
| 47 | 40, 41, 44, 46 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)) |
| 48 | 47 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))) |
| 49 | 48 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))) |
| 51 | 50 | 3impib 1117 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)) |
| 52 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 53 | 52 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ ℕ0) |
| 54 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗)) |
| 55 | 54, 45, 5, 37 | coe1fvalcl 22214 |
. . . . . . . . . . . . 13
⊢ (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅)) |
| 56 | 51, 53, 55 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅)) |
| 57 | 10, 37, 38, 31, 39, 56 | matbas2d 22429 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴)) |
| 58 | | simprl 771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 59 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 60 | 1 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ (Base‘𝐶)) |
| 61 | 60 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ 𝐵 → 𝑏 ∈ (Base‘𝐶)) |
| 62 | 61 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑏 ∈ (Base‘𝐶)) |
| 63 | 6, 45 | matecl 22431 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)) |
| 64 | 58, 59, 62, 63 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)) |
| 65 | 64 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))) |
| 66 | 65 | adantrl 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))) |
| 67 | 66 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))) |
| 68 | 67 | 3impib 1117 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)) |
| 69 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗)) |
| 70 | 69, 45, 5, 37 | coe1fvalcl 22214 |
. . . . . . . . . . . . 13
⊢ (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅)) |
| 71 | 68, 53, 70 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅)) |
| 72 | 10, 37, 38, 31, 39, 71 | matbas2d 22429 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) |
| 73 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(+g‘𝐴) = (+g‘𝐴) |
| 74 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 75 | 10, 38, 73, 74 | matplusg2 22433 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f
(+g‘𝑅)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
| 76 | 57, 72, 75 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f
(+g‘𝑅)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
| 77 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) |
| 78 | 77 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
| 79 | 78 | 3impb 1115 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
| 80 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 81 | 6, 1, 3, 80 | matplusgcell 22439 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑎(+g‘𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗))) |
| 82 | 79, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑎(+g‘𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗))) |
| 83 | 82 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))) |
| 84 | 83 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))‘𝑘)) |
| 85 | 39 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 86 | 5, 45, 80, 74 | coe1addfv 22268 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) →
((coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
| 87 | 85, 51, 68, 53, 86 | syl31anc 1375 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g‘𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
| 88 | 84, 87 | eqtrd 2777 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
| 89 | 88 | mpoeq3dva 7510 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g‘𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
| 90 | 36, 76, 89 | 3eqtr4rd 2788 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑎(+g‘𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))) |
| 91 | 12 | ply1sca 22254 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄)) |
| 92 | 11, 91 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄)) |
| 93 | 92 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄)) |
| 94 | 93 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(+g‘𝐴) =
(+g‘(Scalar‘𝑄))) |
| 95 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
| 96 | 6, 1 | decpmatval 22771 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))) |
| 97 | 95, 96 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))) |
| 98 | 97 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘)) |
| 99 | | simprr 773 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
| 100 | 6, 1 | decpmatval 22771 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
| 101 | 99, 100 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) |
| 102 | 101 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘)) |
| 103 | 94, 98, 102 | oveq123d 7452 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘))) |
| 104 | 30, 90, 103 | 3eqtrd 2781 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘))) |
| 105 | 104 | oveq1d 7446 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) ∗ (𝑘 ↑ 𝑋))) |
| 106 | 12 | ply1lmod 22253 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Ring → 𝑄 ∈ LMod) |
| 107 | 11, 106 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod) |
| 108 | 107 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod) |
| 109 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 110 | 109 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ 𝐵) |
| 111 | 5, 6, 1, 10, 38 | decpmatcl 22773 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴)) |
| 112 | 39, 110, 52, 111 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴)) |
| 113 | 92 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Scalar‘𝑄) = 𝐴) |
| 114 | 113 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(Scalar‘𝑄) = 𝐴) |
| 115 | 114 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(Base‘(Scalar‘𝑄)) = (Base‘𝐴)) |
| 116 | 112, 115 | eleqtrrd 2844 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄))) |
| 117 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
| 118 | 117 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏 ∈ 𝐵) |
| 119 | 5, 6, 1, 10, 38 | decpmatcl 22773 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴)) |
| 120 | 39, 118, 52, 119 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴)) |
| 121 | 120, 115 | eleqtrrd 2844 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄))) |
| 122 | | eqid 2737 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
| 123 | 122, 2 | mgpbas 20142 |
. . . . . . . . 9
⊢ 𝐿 =
(Base‘(mulGrp‘𝑄)) |
| 124 | 122 | ringmgp 20236 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ Ring →
(mulGrp‘𝑄) ∈
Mnd) |
| 125 | 14, 124 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(mulGrp‘𝑄) ∈
Mnd) |
| 126 | 125 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝑄) ∈
Mnd) |
| 127 | 19, 12, 2 | vr1cl 22219 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ring → 𝑋 ∈ 𝐿) |
| 128 | 11, 127 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ 𝐿) |
| 129 | 128 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐿) |
| 130 | 123, 18, 126, 52, 129 | mulgnn0cld 19113 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐿) |
| 131 | | eqid 2737 |
. . . . . . . . 9
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
| 132 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄)) |
| 133 | | eqid 2737 |
. . . . . . . . 9
⊢
(+g‘(Scalar‘𝑄)) =
(+g‘(Scalar‘𝑄)) |
| 134 | 2, 4, 131, 17, 132, 133 | lmodvsdir 20884 |
. . . . . . . 8
⊢ ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 ↑ 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 135 | 108, 116,
121, 130, 134 | syl13anc 1374 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 136 | 105, 135 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 137 | 136 | mpteq2dva 5242 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 138 | 137 | oveq2d 7447 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 139 | | eqid 2737 |
. . . . 5
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 140 | | ringcmn 20279 |
. . . . . . 7
⊢ (𝑄 ∈ Ring → 𝑄 ∈ CMnd) |
| 141 | 14, 140 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd) |
| 142 | 141 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑄 ∈ CMnd) |
| 143 | | nn0ex 12532 |
. . . . . 6
⊢
ℕ0 ∈ V |
| 144 | 143 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ℕ0 ∈
V) |
| 145 | 109 | anim2i 617 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵)) |
| 146 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ 𝐵)) |
| 147 | 145, 146 | sylibr 234 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵)) |
| 148 | 5, 6, 1, 17, 18, 19, 10, 12, 2 | pm2mpghmlem1 22819 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
| 149 | 147, 148 | sylan 580 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
| 150 | 117 | anim2i 617 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵)) |
| 151 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏 ∈ 𝐵)) |
| 152 | 150, 151 | sylibr 234 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵)) |
| 153 | 5, 6, 1, 17, 18, 19, 10, 12, 2 | pm2mpghmlem1 22819 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
| 154 | 152, 153 | sylan 580 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) ∈ 𝐿) |
| 155 | | eqidd 2738 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 156 | | eqidd 2738 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 157 | 5, 6, 1, 17, 18, 19, 10, 12 | pm2mpghmlem2 22818 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
| 158 | 147, 157 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
| 159 | 5, 6, 1, 17, 18, 19, 10, 12 | pm2mpghmlem2 22818 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
| 160 | 152, 159 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
| 161 | 2, 139, 4, 142, 144, 149, 154, 155, 156, 158, 160 | gsummptfsadd 19942 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))(+g‘𝑄)((𝑏 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))(+g‘𝑄)(𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 162 | 138, 161 | eqtrd 2777 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))(+g‘𝑄)(𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 163 | | simpll 767 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑁 ∈ Fin) |
| 164 | | simplr 769 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 165 | 5, 6, 1, 17, 18, 19, 10, 12, 20 | pm2mpfval 22802 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g‘𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g‘𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 166 | 163, 164,
28, 165 | syl3anc 1373 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘(𝑎(+g‘𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ (((𝑎(+g‘𝐶)𝑏) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 167 | 5, 6, 1, 17, 18, 19, 10, 12, 20 | pm2mpfval 22802 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑇‘𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 168 | 163, 164,
95, 167 | syl3anc 1373 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 169 | 5, 6, 1, 17, 18, 19, 10, 12, 20 | pm2mpfval 22802 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵) → (𝑇‘𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 170 | 163, 164,
99, 169 | syl3anc 1373 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 171 | 168, 170 | oveq12d 7449 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑇‘𝑎)(+g‘𝑄)(𝑇‘𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑎 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))(+g‘𝑄)(𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑏 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 172 | 162, 166,
171 | 3eqtr4d 2787 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑇‘(𝑎(+g‘𝐶)𝑏)) = ((𝑇‘𝑎)(+g‘𝑄)(𝑇‘𝑏))) |
| 173 | 1, 2, 3, 4, 9, 16,
21, 172 | isghmd 19243 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄)) |