MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpghm Structured version   Visualization version   GIF version

Theorem pm2mpghm 22701
Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))

Proof of Theorem pm2mpghm
Dummy variables 𝑘 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpfo.b . 2 𝐵 = (Base‘𝐶)
2 pm2mpfo.l . 2 𝐿 = (Base‘𝑄)
3 eqid 2729 . 2 (+g𝐶) = (+g𝐶)
4 eqid 2729 . 2 (+g𝑄) = (+g𝑄)
5 pm2mpfo.p . . . 4 𝑃 = (Poly1𝑅)
6 pm2mpfo.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 22577 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringgrp 20123 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
97, 8syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
10 pm2mpfo.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
1110matring 22328 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
12 pm2mpfo.q . . . . 5 𝑄 = (Poly1𝐴)
1312ply1ring 22130 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
1411, 13syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
15 ringgrp 20123 . . 3 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
1614, 15syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Grp)
17 pm2mpfo.m . . 3 = ( ·𝑠𝑄)
18 pm2mpfo.e . . 3 = (.g‘(mulGrp‘𝑄))
19 pm2mpfo.x . . 3 𝑋 = (var1𝐴)
20 pm2mpfo.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
215, 6, 1, 17, 18, 19, 10, 12, 20, 2pm2mpf 22683 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
22 ringmnd 20128 . . . . . . . . . . . . . 14 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
237, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
2423anim1i 615 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
25 3anass 1094 . . . . . . . . . . . 12 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) ↔ (𝐶 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)))
2624, 25sylibr 234 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵))
271, 3mndcl 18616 . . . . . . . . . . 11 ((𝐶 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝐶)𝑏) ∈ 𝐵)
296, 1decpmatval 22650 . . . . . . . . . 10 (((𝑎(+g𝐶)𝑏) ∈ 𝐵𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
3028, 29sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)))
31 simplll 774 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ Fin)
32 fvexd 6837 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ V)
33 fvexd 6837 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ V)
34 eqidd 2730 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
35 eqidd 2730 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
3631, 31, 32, 33, 34, 35offval22 8021 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
37 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
39 simpllr 775 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
40 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
41 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
421eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4342biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐵𝑎 ∈ (Base‘𝐶))
4443ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑎 ∈ (Base‘𝐶))
45 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
466, 45matecl 22310 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝐶)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4740, 41, 44, 46syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
4847ex 412 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
4948adantrr 717 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
5049adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃)))
51503impib 1116 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑎𝑗) ∈ (Base‘𝑃))
52 simpr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
53523ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
54 eqid 2729 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑎𝑗)) = (coe1‘(𝑖𝑎𝑗))
5554, 45, 5, 37coe1fvalcl 22095 . . . . . . . . . . . . 13 (((𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5651, 53, 55syl2anc 584 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑎𝑗))‘𝑘) ∈ (Base‘𝑅))
5710, 37, 38, 31, 39, 56matbas2d 22308 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴))
58 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
59 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
601eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6160biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐵𝑏 ∈ (Base‘𝐶))
6261ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑏 ∈ (Base‘𝐶))
636, 45matecl 22310 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝐶)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6458, 59, 62, 63syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
6564ex 412 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6665adantrl 716 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
6766adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃)))
68673impib 1116 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑏𝑗) ∈ (Base‘𝑃))
69 eqid 2729 . . . . . . . . . . . . . 14 (coe1‘(𝑖𝑏𝑗)) = (coe1‘(𝑖𝑏𝑗))
7069, 45, 5, 37coe1fvalcl 22095 . . . . . . . . . . . . 13 (((𝑖𝑏𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7168, 53, 70syl2anc 584 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑏𝑗))‘𝑘) ∈ (Base‘𝑅))
7210, 37, 38, 31, 39, 71matbas2d 22308 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴))
73 eqid 2729 . . . . . . . . . . . 12 (+g𝐴) = (+g𝐴)
74 eqid 2729 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
7510, 38, 73, 74matplusg2 22312 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
7657, 72, 75syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) ∘f (+g𝑅)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
77 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎𝐵𝑏𝐵))
7877anim1i 615 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
79783impb 1114 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)))
80 eqid 2729 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
816, 1, 3, 80matplusgcell 22318 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑏𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8279, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑎(+g𝐶)𝑏)𝑗) = ((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))
8382fveq2d 6826 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗)) = (coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗))))
8483fveq1d 6824 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘))
85393ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
865, 45, 80, 74coe1addfv 22149 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ (𝑖𝑎𝑗) ∈ (Base‘𝑃) ∧ (𝑖𝑏𝑗) ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ℕ0) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8785, 51, 68, 53, 86syl31anc 1375 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑎𝑗)(+g𝑃)(𝑖𝑏𝑗)))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8884, 87eqtrd 2764 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘) = (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘)))
8988mpoeq3dva 7426 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ (((coe1‘(𝑖𝑎𝑗))‘𝑘)(+g𝑅)((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9036, 76, 893eqtr4rd 2775 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑎(+g𝐶)𝑏)𝑗))‘𝑘)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))))
9112ply1sca 22135 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
9211, 91syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
9392ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
9493fveq2d 6826 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (+g𝐴) = (+g‘(Scalar‘𝑄)))
95 simprl 770 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
966, 1decpmatval 22650 . . . . . . . . . . . 12 ((𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9795, 96sylan 580 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)))
9897eqcomd 2735 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘)) = (𝑎 decompPMat 𝑘))
99 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
1006, 1decpmatval 22650 . . . . . . . . . . . 12 ((𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
10199, 100sylan 580 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)))
102101eqcomd 2735 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘)) = (𝑏 decompPMat 𝑘))
10394, 98, 102oveq123d 7370 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑎𝑗))‘𝑘))(+g𝐴)(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑏𝑗))‘𝑘))) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
10430, 90, 1033eqtrd 2768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎(+g𝐶)𝑏) decompPMat 𝑘) = ((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)))
105104oveq1d 7364 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)))
10612ply1lmod 22134 . . . . . . . . . 10 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
10711, 106syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
108107ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
109 simpl 482 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
110109ad2antlr 727 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑎𝐵)
1115, 6, 1, 10, 38decpmatcl 22652 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11239, 110, 52, 111syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘𝐴))
11392eqcomd 2735 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑄) = 𝐴)
114113ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑄) = 𝐴)
115114fveq2d 6826 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑄)) = (Base‘𝐴))
116112, 115eleqtrrd 2831 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
117 simpr 484 . . . . . . . . . . 11 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
118117ad2antlr 727 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑏𝐵)
1195, 6, 1, 10, 38decpmatcl 22652 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑏𝐵𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
12039, 118, 52, 119syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘𝐴))
121120, 115eleqtrrd 2831 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)))
122 eqid 2729 . . . . . . . . . 10 (mulGrp‘𝑄) = (mulGrp‘𝑄)
123122, 2mgpbas 20030 . . . . . . . . 9 𝐿 = (Base‘(mulGrp‘𝑄))
124122ringmgp 20124 . . . . . . . . . . 11 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
12514, 124syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
126125ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
12719, 12, 2vr1cl 22100 . . . . . . . . . . 11 (𝐴 ∈ Ring → 𝑋𝐿)
12811, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋𝐿)
129128ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐿)
130123, 18, 126, 52, 129mulgnn0cld 18974 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
131 eqid 2729 . . . . . . . . 9 (Scalar‘𝑄) = (Scalar‘𝑄)
132 eqid 2729 . . . . . . . . 9 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
133 eqid 2729 . . . . . . . . 9 (+g‘(Scalar‘𝑄)) = (+g‘(Scalar‘𝑄))
1342, 4, 131, 17, 132, 133lmodvsdir 20789 . . . . . . . 8 ((𝑄 ∈ LMod ∧ ((𝑎 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑏 decompPMat 𝑘) ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ 𝐿)) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
135108, 116, 121, 130, 134syl13anc 1374 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎 decompPMat 𝑘)(+g‘(Scalar‘𝑄))(𝑏 decompPMat 𝑘)) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
136105, 135eqtrd 2764 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)) = (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
137136mpteq2dva 5185 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
138137oveq2d 7365 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
139 eqid 2729 . . . . 5 (0g𝑄) = (0g𝑄)
140 ringcmn 20167 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
14114, 140syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
142141adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ CMnd)
143 nn0ex 12390 . . . . . 6 0 ∈ V
144143a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ℕ0 ∈ V)
145109anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
146 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎𝐵))
147145, 146sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵))
1485, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 22698 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
149147, 148sylan 580 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑎 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
150117anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
151 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵))
152150, 151sylibr 234 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵))
1535, 6, 1, 17, 18, 19, 10, 12, 2pm2mpghmlem1 22698 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
154152, 153sylan 580 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝑏 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
155 eqidd 2730 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))
156 eqidd 2730 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))
1575, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 22697 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
158147, 157syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1595, 6, 1, 17, 18, 19, 10, 12pm2mpghmlem2 22697 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
160152, 159syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
1612, 139, 4, 142, 144, 149, 154, 155, 156, 158, 160gsummptfsadd 19803 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎 decompPMat 𝑘) (𝑘 𝑋))(+g𝑄)((𝑏 decompPMat 𝑘) (𝑘 𝑋))))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
162138, 161eqtrd 2764 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
163 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑁 ∈ Fin)
164 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
1655, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22681 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑎(+g𝐶)𝑏) ∈ 𝐵) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
166163, 164, 28, 165syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ (((𝑎(+g𝐶)𝑏) decompPMat 𝑘) (𝑘 𝑋)))))
1675, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22681 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
168163, 164, 95, 167syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑎) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋)))))
1695, 6, 1, 17, 18, 19, 10, 12, 20pm2mpfval 22681 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
170163, 164, 99, 169syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇𝑏) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋)))))
171168, 170oveq12d 7367 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑇𝑎)(+g𝑄)(𝑇𝑏)) = ((𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑎 decompPMat 𝑘) (𝑘 𝑋))))(+g𝑄)(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑏 decompPMat 𝑘) (𝑘 𝑋))))))
172162, 166, 1713eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎𝐵𝑏𝐵)) → (𝑇‘(𝑎(+g𝐶)𝑏)) = ((𝑇𝑎)(+g𝑄)(𝑇𝑏)))
1731, 2, 3, 4, 9, 16, 21, 172isghmd 19104 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cmpo 7351  f cof 7611  Fincfn 8872   finSupp cfsupp 9251  0cn0 12384  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  Grpcgrp 18812  .gcmg 18946   GrpHom cghm 19091  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  LModclmod 20763  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060   Mat cmat 22292   decompPMat cdecpmat 22647   pMatToMatPoly cpm2mp 22677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mamu 22276  df-mat 22293  df-decpmat 22648  df-pm2mp 22678
This theorem is referenced by:  pm2mpgrpiso  22702  pm2mprhm  22706  pm2mp  22710
  Copyright terms: Public domain W3C validator