| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsubdir | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 30979 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lmodsubdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubdir.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubdir.m | ⊢ − = (-g‘𝑊) |
| lmodsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| lmodsubdir.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubdir.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubdir.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lmodsubdir.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubdir | ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdir.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubdir.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 3 | lmodsubdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | lmodring 20774 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 6 | ringgrp 20147 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 8 | lmodsubdir.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 9 | lmodsubdir.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
| 11 | 9, 10 | grpinvcl 18919 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾) → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 13 | lmodsubdir.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | lmodsubdir.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | lmodsubdir.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 18 | 14, 15, 3, 16, 9, 17 | lmodvsdir 20792 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘𝐵) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 19 | 1, 2, 12, 13, 18 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 22 | 9, 20, 21, 10, 5, 8 | ringnegl 20211 | . . . . . 6 ⊢ (𝜑 → (((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) = ((invg‘𝐹)‘𝐵)) |
| 23 | 22 | oveq1d 7402 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘𝐵) · 𝑋)) |
| 24 | 9, 21 | ringidcl 20174 | . . . . . . . 8 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 25 | 5, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 26 | 9, 10 | grpinvcl 18919 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 27 | 7, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 28 | 14, 3, 16, 9, 20 | lmodvsass 20793 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 29 | 1, 27, 8, 13, 28 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 30 | 23, 29 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (((invg‘𝐹)‘𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 31 | 30 | oveq2d 7403 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 32 | 19, 31 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 33 | lmodsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 34 | 9, 17, 10, 33 | grpsubval 18917 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 35 | 2, 8, 34 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 36 | 35 | oveq1d 7402 | . 2 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋)) |
| 37 | 14, 3, 16, 9 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 38 | 1, 2, 13, 37 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 39 | 14, 3, 16, 9 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 40 | 1, 8, 13, 39 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 41 | lmodsubdir.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 42 | 14, 15, 41, 3, 16, 10, 21 | lmodvsubval2 20823 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 43 | 1, 38, 40, 42 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 44 | 32, 36, 43 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 1rcur 20090 Ringcrg 20142 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lvecvscan2 21022 scmatsubcl 22404 nlmdsdir 24570 clmsubdir 25002 ttgcontlem1 28812 |
| Copyright terms: Public domain | W3C validator |