MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdir Structured version   Visualization version   GIF version

Theorem lmodsubdir 20940
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 31082 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v 𝑉 = (Base‘𝑊)
lmodsubdir.t · = ( ·𝑠𝑊)
lmodsubdir.f 𝐹 = (Scalar‘𝑊)
lmodsubdir.k 𝐾 = (Base‘𝐹)
lmodsubdir.m = (-g𝑊)
lmodsubdir.s 𝑆 = (-g𝐹)
lmodsubdir.w (𝜑𝑊 ∈ LMod)
lmodsubdir.a (𝜑𝐴𝐾)
lmodsubdir.b (𝜑𝐵𝐾)
lmodsubdir.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodsubdir (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdir.a . . . 4 (𝜑𝐴𝐾)
3 lmodsubdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
43lmodring 20888 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
51, 4syl 17 . . . . . 6 (𝜑𝐹 ∈ Ring)
6 ringgrp 20265 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
75, 6syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
8 lmodsubdir.b . . . . 5 (𝜑𝐵𝐾)
9 lmodsubdir.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2740 . . . . . 6 (invg𝐹) = (invg𝐹)
119, 10grpinvcl 19027 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐵𝐾) → ((invg𝐹)‘𝐵) ∈ 𝐾)
127, 8, 11syl2anc 583 . . . 4 (𝜑 → ((invg𝐹)‘𝐵) ∈ 𝐾)
13 lmodsubdir.x . . . 4 (𝜑𝑋𝑉)
14 lmodsubdir.v . . . . 5 𝑉 = (Base‘𝑊)
15 eqid 2740 . . . . 5 (+g𝑊) = (+g𝑊)
16 lmodsubdir.t . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2740 . . . . 5 (+g𝐹) = (+g𝐹)
1814, 15, 3, 16, 9, 17lmodvsdir 20906 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘𝐵) ∈ 𝐾𝑋𝑉)) → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
191, 2, 12, 13, 18syl13anc 1372 . . 3 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
20 eqid 2740 . . . . . . 7 (.r𝐹) = (.r𝐹)
21 eqid 2740 . . . . . . 7 (1r𝐹) = (1r𝐹)
229, 20, 21, 10, 5, 8ringnegl 20325 . . . . . 6 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) = ((invg𝐹)‘𝐵))
2322oveq1d 7463 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘𝐵) · 𝑋))
249, 21ringidcl 20289 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
255, 24syl 17 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
269, 10grpinvcl 19027 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
277, 25, 26syl2anc 583 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2814, 3, 16, 9, 20lmodvsass 20907 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐵𝐾𝑋𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
291, 27, 8, 13, 28syl13anc 1372 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3023, 29eqtr3d 2782 . . . 4 (𝜑 → (((invg𝐹)‘𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3130oveq2d 7464 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
3219, 31eqtrd 2780 . 2 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
33 lmodsubdir.s . . . . 5 𝑆 = (-g𝐹)
349, 17, 10, 33grpsubval 19025 . . . 4 ((𝐴𝐾𝐵𝐾) → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
352, 8, 34syl2anc 583 . . 3 (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
3635oveq1d 7463 . 2 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋))
3714, 3, 16, 9lmodvscl 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
381, 2, 13, 37syl3anc 1371 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
3914, 3, 16, 9lmodvscl 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
401, 8, 13, 39syl3anc 1371 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
41 lmodsubdir.m . . . 4 = (-g𝑊)
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 20937 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
431, 38, 40, 42syl3anc 1371 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
4432, 36, 433eqtr4d 2790 1 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  1rcur 20208  Ringcrg 20260  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lvecvscan2  21137  scmatsubcl  22544  nlmdsdir  24724  clmsubdir  25154  ttgcontlem1  28917
  Copyright terms: Public domain W3C validator