| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsubdir | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 31036 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lmodsubdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubdir.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubdir.m | ⊢ − = (-g‘𝑊) |
| lmodsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| lmodsubdir.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubdir.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubdir.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lmodsubdir.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubdir | ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdir.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubdir.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 3 | lmodsubdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | lmodring 20830 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 6 | ringgrp 20203 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 8 | lmodsubdir.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 9 | lmodsubdir.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2736 | . . . . . 6 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
| 11 | 9, 10 | grpinvcl 18975 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾) → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 13 | lmodsubdir.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | lmodsubdir.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | eqid 2736 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | lmodsubdir.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2736 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 18 | 14, 15, 3, 16, 9, 17 | lmodvsdir 20848 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘𝐵) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 19 | 1, 2, 12, 13, 18 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 20 | eqid 2736 | . . . . . . 7 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 21 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 22 | 9, 20, 21, 10, 5, 8 | ringnegl 20267 | . . . . . 6 ⊢ (𝜑 → (((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) = ((invg‘𝐹)‘𝐵)) |
| 23 | 22 | oveq1d 7425 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘𝐵) · 𝑋)) |
| 24 | 9, 21 | ringidcl 20230 | . . . . . . . 8 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 25 | 5, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 26 | 9, 10 | grpinvcl 18975 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 27 | 7, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 28 | 14, 3, 16, 9, 20 | lmodvsass 20849 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 29 | 1, 27, 8, 13, 28 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 30 | 23, 29 | eqtr3d 2773 | . . . 4 ⊢ (𝜑 → (((invg‘𝐹)‘𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 31 | 30 | oveq2d 7426 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 32 | 19, 31 | eqtrd 2771 | . 2 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 33 | lmodsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 34 | 9, 17, 10, 33 | grpsubval 18973 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 35 | 2, 8, 34 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 36 | 35 | oveq1d 7425 | . 2 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋)) |
| 37 | 14, 3, 16, 9 | lmodvscl 20840 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 38 | 1, 2, 13, 37 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 39 | 14, 3, 16, 9 | lmodvscl 20840 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 40 | 1, 8, 13, 39 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 41 | lmodsubdir.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 42 | 14, 15, 41, 3, 16, 10, 21 | lmodvsubval2 20879 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 43 | 1, 38, 40, 42 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 44 | 32, 36, 43 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 Grpcgrp 18921 invgcminusg 18922 -gcsg 18923 1rcur 20146 Ringcrg 20198 LModclmod 20822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-lmod 20824 |
| This theorem is referenced by: lvecvscan2 21078 scmatsubcl 22460 nlmdsdir 24626 clmsubdir 25058 ttgcontlem1 28869 |
| Copyright terms: Public domain | W3C validator |