![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodsubdir | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 31082 analog.) (Contributed by NM, 2-Jul-2014.) |
Ref | Expression |
---|---|
lmodsubdir.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodsubdir.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodsubdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodsubdir.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodsubdir.m | ⊢ − = (-g‘𝑊) |
lmodsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
lmodsubdir.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodsubdir.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodsubdir.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lmodsubdir.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodsubdir | ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubdir.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodsubdir.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
3 | lmodsubdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | lmodring 20888 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Ring) |
6 | ringgrp 20265 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
8 | lmodsubdir.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
9 | lmodsubdir.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2740 | . . . . . 6 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
11 | 9, 10 | grpinvcl 19027 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾) → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
12 | 7, 8, 11 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
13 | lmodsubdir.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | lmodsubdir.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
15 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
16 | lmodsubdir.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | eqid 2740 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
18 | 14, 15, 3, 16, 9, 17 | lmodvsdir 20906 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘𝐵) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
19 | 1, 2, 12, 13, 18 | syl13anc 1372 | . . 3 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
20 | eqid 2740 | . . . . . . 7 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
21 | eqid 2740 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
22 | 9, 20, 21, 10, 5, 8 | ringnegl 20325 | . . . . . 6 ⊢ (𝜑 → (((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) = ((invg‘𝐹)‘𝐵)) |
23 | 22 | oveq1d 7463 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘𝐵) · 𝑋)) |
24 | 9, 21 | ringidcl 20289 | . . . . . . . 8 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
25 | 5, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
26 | 9, 10 | grpinvcl 19027 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
27 | 7, 25, 26 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
28 | 14, 3, 16, 9, 20 | lmodvsass 20907 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
29 | 1, 27, 8, 13, 28 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
30 | 23, 29 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → (((invg‘𝐹)‘𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
31 | 30 | oveq2d 7464 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
32 | 19, 31 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
33 | lmodsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
34 | 9, 17, 10, 33 | grpsubval 19025 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
35 | 2, 8, 34 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
36 | 35 | oveq1d 7463 | . 2 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋)) |
37 | 14, 3, 16, 9 | lmodvscl 20898 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
38 | 1, 2, 13, 37 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
39 | 14, 3, 16, 9 | lmodvscl 20898 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
40 | 1, 8, 13, 39 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
41 | lmodsubdir.m | . . . 4 ⊢ − = (-g‘𝑊) | |
42 | 14, 15, 41, 3, 16, 10, 21 | lmodvsubval2 20937 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
43 | 1, 38, 40, 42 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
44 | 32, 36, 43 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 Grpcgrp 18973 invgcminusg 18974 -gcsg 18975 1rcur 20208 Ringcrg 20260 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 |
This theorem is referenced by: lvecvscan2 21137 scmatsubcl 22544 nlmdsdir 24724 clmsubdir 25154 ttgcontlem1 28917 |
Copyright terms: Public domain | W3C validator |