| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsubdir | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 31032 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lmodsubdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubdir.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubdir.m | ⊢ − = (-g‘𝑊) |
| lmodsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| lmodsubdir.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubdir.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubdir.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lmodsubdir.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubdir | ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdir.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubdir.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 3 | lmodsubdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | lmodring 20803 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 6 | ringgrp 20158 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 8 | lmodsubdir.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 9 | lmodsubdir.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2733 | . . . . . 6 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
| 11 | 9, 10 | grpinvcl 18902 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾) → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 13 | lmodsubdir.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | lmodsubdir.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | lmodsubdir.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 18 | 14, 15, 3, 16, 9, 17 | lmodvsdir 20821 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘𝐵) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 19 | 1, 2, 12, 13, 18 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 20 | eqid 2733 | . . . . . . 7 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 21 | eqid 2733 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 22 | 9, 20, 21, 10, 5, 8 | ringnegl 20222 | . . . . . 6 ⊢ (𝜑 → (((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) = ((invg‘𝐹)‘𝐵)) |
| 23 | 22 | oveq1d 7367 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘𝐵) · 𝑋)) |
| 24 | 9, 21 | ringidcl 20185 | . . . . . . . 8 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 25 | 5, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 26 | 9, 10 | grpinvcl 18902 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 27 | 7, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 28 | 14, 3, 16, 9, 20 | lmodvsass 20822 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 29 | 1, 27, 8, 13, 28 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 30 | 23, 29 | eqtr3d 2770 | . . . 4 ⊢ (𝜑 → (((invg‘𝐹)‘𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 31 | 30 | oveq2d 7368 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 32 | 19, 31 | eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 33 | lmodsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 34 | 9, 17, 10, 33 | grpsubval 18900 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 35 | 2, 8, 34 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 36 | 35 | oveq1d 7367 | . 2 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋)) |
| 37 | 14, 3, 16, 9 | lmodvscl 20813 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 38 | 1, 2, 13, 37 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 39 | 14, 3, 16, 9 | lmodvscl 20813 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 40 | 1, 8, 13, 39 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 41 | lmodsubdir.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 42 | 14, 15, 41, 3, 16, 10, 21 | lmodvsubval2 20852 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 43 | 1, 38, 40, 42 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 44 | 32, 36, 43 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 Grpcgrp 18848 invgcminusg 18849 -gcsg 18850 1rcur 20101 Ringcrg 20153 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lvecvscan2 21051 scmatsubcl 22433 nlmdsdir 24598 clmsubdir 25030 ttgcontlem1 28864 |
| Copyright terms: Public domain | W3C validator |