Proof of Theorem lmodsubdir
Step | Hyp | Ref
| Expression |
1 | | lmodsubdir.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
2 | | lmodsubdir.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
3 | | lmodsubdir.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
4 | 3 | lmodring 20131 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
5 | 1, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ Ring) |
6 | | ringgrp 19788 |
. . . . . 6
⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ Grp) |
8 | | lmodsubdir.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝐾) |
9 | | lmodsubdir.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐹) |
10 | | eqid 2738 |
. . . . . 6
⊢
(invg‘𝐹) = (invg‘𝐹) |
11 | 9, 10 | grpinvcl 18627 |
. . . . 5
⊢ ((𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾) → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
12 | 7, 8, 11 | syl2anc 584 |
. . . 4
⊢ (𝜑 →
((invg‘𝐹)‘𝐵) ∈ 𝐾) |
13 | | lmodsubdir.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
14 | | lmodsubdir.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
15 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑊) = (+g‘𝑊) |
16 | | lmodsubdir.t |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
17 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐹) = (+g‘𝐹) |
18 | 14, 15, 3, 16, 9, 17 | lmodvsdir 20147 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘𝐵) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
19 | 1, 2, 12, 13, 18 | syl13anc 1371 |
. . 3
⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
20 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝐹) = (.r‘𝐹) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝐹) = (1r‘𝐹) |
22 | 9, 20, 21, 10, 5, 8 | ringnegl 19833 |
. . . . . 6
⊢ (𝜑 →
(((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) = ((invg‘𝐹)‘𝐵)) |
23 | 22 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 →
((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘𝐵) · 𝑋)) |
24 | 9, 21 | ringidcl 19807 |
. . . . . . . 8
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ 𝐾) |
25 | 5, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
26 | 9, 10 | grpinvcl 18627 |
. . . . . . 7
⊢ ((𝐹 ∈ Grp ∧
(1r‘𝐹)
∈ 𝐾) →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
27 | 7, 25, 26 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
28 | 14, 3, 16, 9, 20 | lmodvsass 20148 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
(((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
29 | 1, 27, 8, 13, 28 | syl13anc 1371 |
. . . . 5
⊢ (𝜑 →
((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
30 | 23, 29 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 →
(((invg‘𝐹)‘𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
31 | 30 | oveq2d 7291 |
. . 3
⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
32 | 19, 31 | eqtrd 2778 |
. 2
⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
33 | | lmodsubdir.s |
. . . . 5
⊢ 𝑆 = (-g‘𝐹) |
34 | 9, 17, 10, 33 | grpsubval 18625 |
. . . 4
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
35 | 2, 8, 34 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
36 | 35 | oveq1d 7290 |
. 2
⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋)) |
37 | 14, 3, 16, 9 | lmodvscl 20140 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
38 | 1, 2, 13, 37 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
39 | 14, 3, 16, 9 | lmodvscl 20140 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
40 | 1, 8, 13, 39 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
41 | | lmodsubdir.m |
. . . 4
⊢ − =
(-g‘𝑊) |
42 | 14, 15, 41, 3, 16, 10, 21 | lmodvsubval2 20178 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
43 | 1, 38, 40, 42 | syl3anc 1370 |
. 2
⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
44 | 32, 36, 43 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |