| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsubdir | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 31012 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lmodsubdir.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubdir.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubdir.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubdir.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubdir.m | ⊢ − = (-g‘𝑊) |
| lmodsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| lmodsubdir.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubdir.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubdir.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lmodsubdir.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubdir | ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdir.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubdir.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 3 | lmodsubdir.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | lmodring 20789 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 6 | ringgrp 20141 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 8 | lmodsubdir.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 9 | lmodsubdir.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
| 11 | 9, 10 | grpinvcl 18884 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾) → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 12 | 7, 8, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐹)‘𝐵) ∈ 𝐾) |
| 13 | lmodsubdir.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | lmodsubdir.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | lmodsubdir.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 18 | 14, 15, 3, 16, 9, 17 | lmodvsdir 20807 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘𝐵) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 19 | 1, 2, 12, 13, 18 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋))) |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 22 | 9, 20, 21, 10, 5, 8 | ringnegl 20205 | . . . . . 6 ⊢ (𝜑 → (((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) = ((invg‘𝐹)‘𝐵)) |
| 23 | 22 | oveq1d 7368 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘𝐵) · 𝑋)) |
| 24 | 9, 21 | ringidcl 20168 | . . . . . . . 8 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 25 | 5, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 26 | 9, 10 | grpinvcl 18884 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 27 | 7, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
| 28 | 14, 3, 16, 9, 20 | lmodvsass 20808 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 29 | 1, 27, 8, 13, 28 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 30 | 23, 29 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (((invg‘𝐹)‘𝐵) · 𝑋) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋))) |
| 31 | 30 | oveq2d 7369 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 32 | 19, 31 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 33 | lmodsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 34 | 9, 17, 10, 33 | grpsubval 18882 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 35 | 2, 8, 34 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵))) |
| 36 | 35 | oveq1d 7368 | . 2 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g‘𝐹)((invg‘𝐹)‘𝐵)) · 𝑋)) |
| 37 | 14, 3, 16, 9 | lmodvscl 20799 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 38 | 1, 2, 13, 37 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 39 | 14, 3, 16, 9 | lmodvscl 20799 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐵 · 𝑋) ∈ 𝑉) |
| 40 | 1, 8, 13, 39 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ 𝑉) |
| 41 | lmodsubdir.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 42 | 14, 15, 41, 3, 16, 10, 21 | lmodvsubval2 20838 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 43 | 1, 38, 40, 42 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐵 · 𝑋)))) |
| 44 | 32, 36, 43 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 Grpcgrp 18830 invgcminusg 18831 -gcsg 18832 1rcur 20084 Ringcrg 20136 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-lmod 20783 |
| This theorem is referenced by: lvecvscan2 21037 scmatsubcl 22420 nlmdsdir 24586 clmsubdir 25018 ttgcontlem1 28848 |
| Copyright terms: Public domain | W3C validator |