MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdir Structured version   Visualization version   GIF version

Theorem lmodsubdir 20261
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 29544 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v 𝑉 = (Base‘𝑊)
lmodsubdir.t · = ( ·𝑠𝑊)
lmodsubdir.f 𝐹 = (Scalar‘𝑊)
lmodsubdir.k 𝐾 = (Base‘𝐹)
lmodsubdir.m = (-g𝑊)
lmodsubdir.s 𝑆 = (-g𝐹)
lmodsubdir.w (𝜑𝑊 ∈ LMod)
lmodsubdir.a (𝜑𝐴𝐾)
lmodsubdir.b (𝜑𝐵𝐾)
lmodsubdir.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodsubdir (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdir.a . . . 4 (𝜑𝐴𝐾)
3 lmodsubdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
43lmodring 20211 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
51, 4syl 17 . . . . . 6 (𝜑𝐹 ∈ Ring)
6 ringgrp 19860 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
75, 6syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
8 lmodsubdir.b . . . . 5 (𝜑𝐵𝐾)
9 lmodsubdir.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2736 . . . . . 6 (invg𝐹) = (invg𝐹)
119, 10grpinvcl 18700 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐵𝐾) → ((invg𝐹)‘𝐵) ∈ 𝐾)
127, 8, 11syl2anc 584 . . . 4 (𝜑 → ((invg𝐹)‘𝐵) ∈ 𝐾)
13 lmodsubdir.x . . . 4 (𝜑𝑋𝑉)
14 lmodsubdir.v . . . . 5 𝑉 = (Base‘𝑊)
15 eqid 2736 . . . . 5 (+g𝑊) = (+g𝑊)
16 lmodsubdir.t . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2736 . . . . 5 (+g𝐹) = (+g𝐹)
1814, 15, 3, 16, 9, 17lmodvsdir 20227 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘𝐵) ∈ 𝐾𝑋𝑉)) → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
191, 2, 12, 13, 18syl13anc 1371 . . 3 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
20 eqid 2736 . . . . . . 7 (.r𝐹) = (.r𝐹)
21 eqid 2736 . . . . . . 7 (1r𝐹) = (1r𝐹)
229, 20, 21, 10, 5, 8ringnegl 19905 . . . . . 6 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) = ((invg𝐹)‘𝐵))
2322oveq1d 7331 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘𝐵) · 𝑋))
249, 21ringidcl 19879 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
255, 24syl 17 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
269, 10grpinvcl 18700 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
277, 25, 26syl2anc 584 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2814, 3, 16, 9, 20lmodvsass 20228 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐵𝐾𝑋𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
291, 27, 8, 13, 28syl13anc 1371 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3023, 29eqtr3d 2778 . . . 4 (𝜑 → (((invg𝐹)‘𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3130oveq2d 7332 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
3219, 31eqtrd 2776 . 2 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
33 lmodsubdir.s . . . . 5 𝑆 = (-g𝐹)
349, 17, 10, 33grpsubval 18698 . . . 4 ((𝐴𝐾𝐵𝐾) → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
352, 8, 34syl2anc 584 . . 3 (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
3635oveq1d 7331 . 2 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋))
3714, 3, 16, 9lmodvscl 20220 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
381, 2, 13, 37syl3anc 1370 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
3914, 3, 16, 9lmodvscl 20220 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
401, 8, 13, 39syl3anc 1370 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
41 lmodsubdir.m . . . 4 = (-g𝑊)
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 20258 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
431, 38, 40, 42syl3anc 1370 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
4432, 36, 433eqtr4d 2786 1 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6465  (class class class)co 7316  Basecbs 16986  +gcplusg 17036  .rcmulr 17037  Scalarcsca 17039   ·𝑠 cvsca 17040  Grpcgrp 18650  invgcminusg 18651  -gcsg 18652  1rcur 19809  Ringcrg 19855  LModclmod 20203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-plusg 17049  df-0g 17226  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-grp 18653  df-minusg 18654  df-sbg 18655  df-mgp 19793  df-ur 19810  df-ring 19857  df-lmod 20205
This theorem is referenced by:  lvecvscan2  20454  scmatsubcl  21746  nlmdsdir  23926  clmsubdir  24345  ttgcontlem1  27385
  Copyright terms: Public domain W3C validator