MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Visualization version   GIF version

Theorem asclghm 20997
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a 𝐴 = (algSc‘𝑊)
asclf.f 𝐹 = (Scalar‘𝑊)
asclf.r (𝜑𝑊 ∈ Ring)
asclf.l (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
asclghm (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))

Proof of Theorem asclghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2738 . 2 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2738 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2738 . 2 (+g𝑊) = (+g𝑊)
5 asclf.l . . . 4 (𝜑𝑊 ∈ LMod)
6 asclf.f . . . . 5 𝐹 = (Scalar‘𝑊)
76lmodring 20046 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
85, 7syl 17 . . 3 (𝜑𝐹 ∈ Ring)
9 ringgrp 19703 . . 3 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
108, 9syl 17 . 2 (𝜑𝐹 ∈ Grp)
11 asclf.r . . 3 (𝜑𝑊 ∈ Ring)
12 ringgrp 19703 . . 3 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
1311, 12syl 17 . 2 (𝜑𝑊 ∈ Grp)
14 asclf.a . . 3 𝐴 = (algSc‘𝑊)
1514, 6, 11, 5, 1, 2asclf 20996 . 2 (𝜑𝐴:(Base‘𝐹)⟶(Base‘𝑊))
165adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod)
17 simprl 767 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹))
18 simprr 769 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹))
19 eqid 2738 . . . . . . 7 (1r𝑊) = (1r𝑊)
202, 19ringidcl 19722 . . . . . 6 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2111, 20syl 17 . . . . 5 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r𝑊) ∈ (Base‘𝑊))
23 eqid 2738 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
242, 4, 6, 23, 1, 3lmodvsdir 20062 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
2516, 17, 18, 22, 24syl13anc 1370 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
261, 3grpcl 18500 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
27263expb 1118 . . . . 5 ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2810, 27sylan 579 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2914, 6, 1, 23, 19asclval 20994 . . . 4 ((𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3028, 29syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3114, 6, 1, 23, 19asclval 20994 . . . . 5 (𝑥 ∈ (Base‘𝐹) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
3214, 6, 1, 23, 19asclval 20994 . . . . 5 (𝑦 ∈ (Base‘𝐹) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
3331, 32oveqan12d 7274 . . . 4 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3433adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3525, 30, 343eqtr4d 2788 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝐴𝑥)(+g𝑊)(𝐴𝑦)))
361, 2, 3, 4, 10, 13, 15, 35isghmd 18758 1 (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492   GrpHom cghm 18746  1rcur 19652  Ringcrg 19698  LModclmod 20038  algSccascl 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-ascl 20972
This theorem is referenced by:  asclinvg  21003  asclrhm  21004  cpmatacl  21773  cpmatinvcl  21774  mat2pmatghm  21787  mat2pmatmul  21788
  Copyright terms: Public domain W3C validator