![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclghm | Structured version Visualization version GIF version |
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
asclf.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclf.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
asclf.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
asclghm | ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . 2 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2731 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | eqid 2731 | . 2 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
4 | eqid 2731 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | asclf.l | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | asclf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | 6 | lmodring 20428 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Ring) |
9 | ringgrp 20019 | . . 3 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ Grp) |
11 | asclf.r | . . 3 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
12 | ringgrp 20019 | . . 3 ⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
14 | asclf.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
15 | 14, 6, 11, 5, 1, 2 | asclf 21367 | . 2 ⊢ (𝜑 → 𝐴:(Base‘𝐹)⟶(Base‘𝑊)) |
16 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod) |
17 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹)) | |
18 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹)) | |
19 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
20 | 2, 19 | ringidcl 20040 | . . . . . 6 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
21 | 11, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r‘𝑊) ∈ (Base‘𝑊)) |
23 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
24 | 2, 4, 6, 23, 1, 3 | lmodvsdir 20445 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
25 | 16, 17, 18, 22, 24 | syl13anc 1372 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
26 | 1, 3 | grpcl 18802 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
27 | 26 | 3expb 1120 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
28 | 10, 27 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
29 | 14, 6, 1, 23, 19 | asclval 21365 | . . . 4 ⊢ ((𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
31 | 14, 6, 1, 23, 19 | asclval 21365 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝐹) → (𝐴‘𝑥) = (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
32 | 14, 6, 1, 23, 19 | asclval 21365 | . . . . 5 ⊢ (𝑦 ∈ (Base‘𝐹) → (𝐴‘𝑦) = (𝑦( ·𝑠 ‘𝑊)(1r‘𝑊))) |
33 | 31, 32 | oveqan12d 7412 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
34 | 33 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
35 | 25, 30, 34 | 3eqtr4d 2781 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦))) |
36 | 1, 2, 3, 4, 10, 13, 15, 35 | isghmd 19067 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 Grpcgrp 18794 GrpHom cghm 19055 1rcur 19963 Ringcrg 20014 LModclmod 20420 algSccascl 21340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-grp 18797 df-ghm 19056 df-mgp 19947 df-ur 19964 df-ring 20016 df-lmod 20422 df-ascl 21343 |
This theorem is referenced by: asclinvg 21374 asclrhm 21375 cpmatacl 22147 cpmatinvcl 22148 mat2pmatghm 22161 mat2pmatmul 22162 |
Copyright terms: Public domain | W3C validator |