| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclghm | Structured version Visualization version GIF version | ||
| Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| asclf.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclf.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
| asclf.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| asclghm | ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2729 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 4 | eqid 2729 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | asclf.l | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | asclf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | 6 | lmodring 20771 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 9 | ringgrp 20123 | . . 3 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 11 | asclf.r | . . 3 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
| 12 | ringgrp 20123 | . . 3 ⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 14 | asclf.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 15 | 14, 6, 11, 5, 1, 2 | asclf 21789 | . 2 ⊢ (𝜑 → 𝐴:(Base‘𝐹)⟶(Base‘𝑊)) |
| 16 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹)) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹)) | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 20 | 2, 19 | ringidcl 20150 | . . . . . 6 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 21 | 11, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 23 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 24 | 2, 4, 6, 23, 1, 3 | lmodvsdir 20789 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 25 | 16, 17, 18, 22, 24 | syl13anc 1374 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 26 | 1, 3 | grpcl 18820 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 27 | 26 | 3expb 1120 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 28 | 10, 27 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 29 | 14, 6, 1, 23, 19 | asclval 21787 | . . . 4 ⊢ ((𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 31 | 14, 6, 1, 23, 19 | asclval 21787 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝐹) → (𝐴‘𝑥) = (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 32 | 14, 6, 1, 23, 19 | asclval 21787 | . . . . 5 ⊢ (𝑦 ∈ (Base‘𝐹) → (𝐴‘𝑦) = (𝑦( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 33 | 31, 32 | oveqan12d 7368 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 34 | 33 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 35 | 25, 30, 34 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦))) |
| 36 | 1, 2, 3, 4, 10, 13, 15, 35 | isghmd 19104 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 Grpcgrp 18812 GrpHom cghm 19091 1rcur 20066 Ringcrg 20118 LModclmod 20763 algSccascl 21759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20765 df-ascl 21762 |
| This theorem is referenced by: asclinvg 21796 asclrhm 21797 cpmatacl 22601 cpmatinvcl 22602 mat2pmatghm 22615 mat2pmatmul 22616 asclf1 42508 |
| Copyright terms: Public domain | W3C validator |