MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Visualization version   GIF version

Theorem asclghm 21087
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a 𝐴 = (algSc‘𝑊)
asclf.f 𝐹 = (Scalar‘𝑊)
asclf.r (𝜑𝑊 ∈ Ring)
asclf.l (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
asclghm (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))

Proof of Theorem asclghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2738 . 2 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2738 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2738 . 2 (+g𝑊) = (+g𝑊)
5 asclf.l . . . 4 (𝜑𝑊 ∈ LMod)
6 asclf.f . . . . 5 𝐹 = (Scalar‘𝑊)
76lmodring 20131 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
85, 7syl 17 . . 3 (𝜑𝐹 ∈ Ring)
9 ringgrp 19788 . . 3 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
108, 9syl 17 . 2 (𝜑𝐹 ∈ Grp)
11 asclf.r . . 3 (𝜑𝑊 ∈ Ring)
12 ringgrp 19788 . . 3 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
1311, 12syl 17 . 2 (𝜑𝑊 ∈ Grp)
14 asclf.a . . 3 𝐴 = (algSc‘𝑊)
1514, 6, 11, 5, 1, 2asclf 21086 . 2 (𝜑𝐴:(Base‘𝐹)⟶(Base‘𝑊))
165adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod)
17 simprl 768 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹))
18 simprr 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹))
19 eqid 2738 . . . . . . 7 (1r𝑊) = (1r𝑊)
202, 19ringidcl 19807 . . . . . 6 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2111, 20syl 17 . . . . 5 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2221adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r𝑊) ∈ (Base‘𝑊))
23 eqid 2738 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
242, 4, 6, 23, 1, 3lmodvsdir 20147 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
2516, 17, 18, 22, 24syl13anc 1371 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
261, 3grpcl 18585 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
27263expb 1119 . . . . 5 ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2810, 27sylan 580 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2914, 6, 1, 23, 19asclval 21084 . . . 4 ((𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3028, 29syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3114, 6, 1, 23, 19asclval 21084 . . . . 5 (𝑥 ∈ (Base‘𝐹) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
3214, 6, 1, 23, 19asclval 21084 . . . . 5 (𝑦 ∈ (Base‘𝐹) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
3331, 32oveqan12d 7294 . . . 4 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3433adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3525, 30, 343eqtr4d 2788 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝐴𝑥)(+g𝑊)(𝐴𝑦)))
361, 2, 3, 4, 10, 13, 15, 35isghmd 18843 1 (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577   GrpHom cghm 18831  1rcur 19737  Ringcrg 19783  LModclmod 20123  algSccascl 21059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-ascl 21062
This theorem is referenced by:  asclinvg  21093  asclrhm  21094  cpmatacl  21865  cpmatinvcl  21866  mat2pmatghm  21879  mat2pmatmul  21880
  Copyright terms: Public domain W3C validator