| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclghm | Structured version Visualization version GIF version | ||
| Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| asclf.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclf.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
| asclf.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| asclghm | ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2736 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | eqid 2736 | . 2 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 4 | eqid 2736 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | asclf.l | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | asclf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | 6 | lmodring 20830 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 9 | ringgrp 20203 | . . 3 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 11 | asclf.r | . . 3 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
| 12 | ringgrp 20203 | . . 3 ⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 14 | asclf.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 15 | 14, 6, 11, 5, 1, 2 | asclf 21847 | . 2 ⊢ (𝜑 → 𝐴:(Base‘𝐹)⟶(Base‘𝑊)) |
| 16 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹)) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹)) | |
| 19 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 20 | 2, 19 | ringidcl 20230 | . . . . . 6 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 21 | 11, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 23 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 24 | 2, 4, 6, 23, 1, 3 | lmodvsdir 20848 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 25 | 16, 17, 18, 22, 24 | syl13anc 1374 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 26 | 1, 3 | grpcl 18929 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 27 | 26 | 3expb 1120 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 28 | 10, 27 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 29 | 14, 6, 1, 23, 19 | asclval 21845 | . . . 4 ⊢ ((𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 31 | 14, 6, 1, 23, 19 | asclval 21845 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝐹) → (𝐴‘𝑥) = (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 32 | 14, 6, 1, 23, 19 | asclval 21845 | . . . . 5 ⊢ (𝑦 ∈ (Base‘𝐹) → (𝐴‘𝑦) = (𝑦( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 33 | 31, 32 | oveqan12d 7429 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 34 | 33 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 35 | 25, 30, 34 | 3eqtr4d 2781 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦))) |
| 36 | 1, 2, 3, 4, 10, 13, 15, 35 | isghmd 19213 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 Grpcgrp 18921 GrpHom cghm 19200 1rcur 20146 Ringcrg 20198 LModclmod 20822 algSccascl 21817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-ghm 19201 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20824 df-ascl 21820 |
| This theorem is referenced by: asclinvg 21854 asclrhm 21855 cpmatacl 22659 cpmatinvcl 22660 mat2pmatghm 22673 mat2pmatmul 22674 asclf1 42529 |
| Copyright terms: Public domain | W3C validator |