MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Visualization version   GIF version

Theorem asclghm 21790
Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a 𝐴 = (algSc‘𝑊)
asclf.f 𝐹 = (Scalar‘𝑊)
asclf.r (𝜑𝑊 ∈ Ring)
asclf.l (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
asclghm (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))

Proof of Theorem asclghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2729 . 2 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2729 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2729 . 2 (+g𝑊) = (+g𝑊)
5 asclf.l . . . 4 (𝜑𝑊 ∈ LMod)
6 asclf.f . . . . 5 𝐹 = (Scalar‘𝑊)
76lmodring 20771 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
85, 7syl 17 . . 3 (𝜑𝐹 ∈ Ring)
9 ringgrp 20123 . . 3 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
108, 9syl 17 . 2 (𝜑𝐹 ∈ Grp)
11 asclf.r . . 3 (𝜑𝑊 ∈ Ring)
12 ringgrp 20123 . . 3 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
1311, 12syl 17 . 2 (𝜑𝑊 ∈ Grp)
14 asclf.a . . 3 𝐴 = (algSc‘𝑊)
1514, 6, 11, 5, 1, 2asclf 21789 . 2 (𝜑𝐴:(Base‘𝐹)⟶(Base‘𝑊))
165adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod)
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹))
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹))
19 eqid 2729 . . . . . . 7 (1r𝑊) = (1r𝑊)
202, 19ringidcl 20150 . . . . . 6 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2111, 20syl 17 . . . . 5 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r𝑊) ∈ (Base‘𝑊))
23 eqid 2729 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
242, 4, 6, 23, 1, 3lmodvsdir 20789 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
2516, 17, 18, 22, 24syl13anc 1374 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
261, 3grpcl 18820 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
27263expb 1120 . . . . 5 ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2810, 27sylan 580 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2914, 6, 1, 23, 19asclval 21787 . . . 4 ((𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3028, 29syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3114, 6, 1, 23, 19asclval 21787 . . . . 5 (𝑥 ∈ (Base‘𝐹) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
3214, 6, 1, 23, 19asclval 21787 . . . . 5 (𝑦 ∈ (Base‘𝐹) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
3331, 32oveqan12d 7368 . . . 4 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3433adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3525, 30, 343eqtr4d 2774 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝐴𝑥)(+g𝑊)(𝐴𝑦)))
361, 2, 3, 4, 10, 13, 15, 35isghmd 19104 1 (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  Grpcgrp 18812   GrpHom cghm 19091  1rcur 20066  Ringcrg 20118  LModclmod 20763  algSccascl 21759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-ghm 19092  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-ascl 21762
This theorem is referenced by:  asclinvg  21796  asclrhm  21797  cpmatacl  22601  cpmatinvcl  22602  mat2pmatghm  22615  mat2pmatmul  22616  asclf1  42508
  Copyright terms: Public domain W3C validator