MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Visualization version   GIF version

Theorem asclghm 21848
Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a 𝐴 = (algSc‘𝑊)
asclf.f 𝐹 = (Scalar‘𝑊)
asclf.r (𝜑𝑊 ∈ Ring)
asclf.l (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
asclghm (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))

Proof of Theorem asclghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2736 . 2 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2736 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2736 . 2 (+g𝑊) = (+g𝑊)
5 asclf.l . . . 4 (𝜑𝑊 ∈ LMod)
6 asclf.f . . . . 5 𝐹 = (Scalar‘𝑊)
76lmodring 20830 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
85, 7syl 17 . . 3 (𝜑𝐹 ∈ Ring)
9 ringgrp 20203 . . 3 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
108, 9syl 17 . 2 (𝜑𝐹 ∈ Grp)
11 asclf.r . . 3 (𝜑𝑊 ∈ Ring)
12 ringgrp 20203 . . 3 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
1311, 12syl 17 . 2 (𝜑𝑊 ∈ Grp)
14 asclf.a . . 3 𝐴 = (algSc‘𝑊)
1514, 6, 11, 5, 1, 2asclf 21847 . 2 (𝜑𝐴:(Base‘𝐹)⟶(Base‘𝑊))
165adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod)
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹))
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹))
19 eqid 2736 . . . . . . 7 (1r𝑊) = (1r𝑊)
202, 19ringidcl 20230 . . . . . 6 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2111, 20syl 17 . . . . 5 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r𝑊) ∈ (Base‘𝑊))
23 eqid 2736 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
242, 4, 6, 23, 1, 3lmodvsdir 20848 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
2516, 17, 18, 22, 24syl13anc 1374 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
261, 3grpcl 18929 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
27263expb 1120 . . . . 5 ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2810, 27sylan 580 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2914, 6, 1, 23, 19asclval 21845 . . . 4 ((𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3028, 29syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3114, 6, 1, 23, 19asclval 21845 . . . . 5 (𝑥 ∈ (Base‘𝐹) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
3214, 6, 1, 23, 19asclval 21845 . . . . 5 (𝑦 ∈ (Base‘𝐹) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
3331, 32oveqan12d 7429 . . . 4 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3433adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3525, 30, 343eqtr4d 2781 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝐴𝑥)(+g𝑊)(𝐴𝑦)))
361, 2, 3, 4, 10, 13, 15, 35isghmd 19213 1 (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  Grpcgrp 18921   GrpHom cghm 19200  1rcur 20146  Ringcrg 20198  LModclmod 20822  algSccascl 21817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-ascl 21820
This theorem is referenced by:  asclinvg  21854  asclrhm  21855  cpmatacl  22659  cpmatinvcl  22660  mat2pmatghm  22673  mat2pmatmul  22674  asclf1  42529
  Copyright terms: Public domain W3C validator