MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclghm Structured version   Visualization version   GIF version

Theorem asclghm 21904
Description: The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
asclf.a 𝐴 = (algSc‘𝑊)
asclf.f 𝐹 = (Scalar‘𝑊)
asclf.r (𝜑𝑊 ∈ Ring)
asclf.l (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
asclghm (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))

Proof of Theorem asclghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2736 . 2 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2736 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2736 . 2 (+g𝑊) = (+g𝑊)
5 asclf.l . . . 4 (𝜑𝑊 ∈ LMod)
6 asclf.f . . . . 5 𝐹 = (Scalar‘𝑊)
76lmodring 20867 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
85, 7syl 17 . . 3 (𝜑𝐹 ∈ Ring)
9 ringgrp 20236 . . 3 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
108, 9syl 17 . 2 (𝜑𝐹 ∈ Grp)
11 asclf.r . . 3 (𝜑𝑊 ∈ Ring)
12 ringgrp 20236 . . 3 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
1311, 12syl 17 . 2 (𝜑𝑊 ∈ Grp)
14 asclf.a . . 3 𝐴 = (algSc‘𝑊)
1514, 6, 11, 5, 1, 2asclf 21903 . 2 (𝜑𝐴:(Base‘𝐹)⟶(Base‘𝑊))
165adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod)
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹))
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹))
19 eqid 2736 . . . . . . 7 (1r𝑊) = (1r𝑊)
202, 19ringidcl 20263 . . . . . 6 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
2111, 20syl 17 . . . . 5 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r𝑊) ∈ (Base‘𝑊))
23 eqid 2736 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
242, 4, 6, 23, 1, 3lmodvsdir 20885 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
2516, 17, 18, 22, 24syl13anc 1373 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
261, 3grpcl 18960 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
27263expb 1120 . . . . 5 ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2810, 27sylan 580 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹))
2914, 6, 1, 23, 19asclval 21901 . . . 4 ((𝑥(+g𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3028, 29syl 17 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝑥(+g𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
3114, 6, 1, 23, 19asclval 21901 . . . . 5 (𝑥 ∈ (Base‘𝐹) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
3214, 6, 1, 23, 19asclval 21901 . . . . 5 (𝑦 ∈ (Base‘𝐹) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
3331, 32oveqan12d 7451 . . . 4 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3433adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴𝑥)(+g𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(+g𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
3525, 30, 343eqtr4d 2786 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g𝐹)𝑦)) = ((𝐴𝑥)(+g𝑊)(𝐴𝑦)))
361, 2, 3, 4, 10, 13, 15, 35isghmd 19244 1 (𝜑𝐴 ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  Grpcgrp 18952   GrpHom cghm 19231  1rcur 20179  Ringcrg 20231  LModclmod 20859  algSccascl 21873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-ghm 19232  df-mgp 20139  df-ur 20180  df-ring 20233  df-lmod 20861  df-ascl 21876
This theorem is referenced by:  asclinvg  21910  asclrhm  21911  cpmatacl  22723  cpmatinvcl  22724  mat2pmatghm  22737  mat2pmatmul  22738  asclf1  42546
  Copyright terms: Public domain W3C validator