![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsscl | Structured version Visualization version GIF version |
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lsscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lsscl.b | ⊢ 𝐵 = (Base‘𝐹) |
lsscl.p | ⊢ + = (+g‘𝑊) |
lsscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lsscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsscl | ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsscl.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | lsscl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | lsscl.p | . . . 4 ⊢ + = (+g‘𝑊) | |
5 | lsscl.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | lsscl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20955 | . . 3 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
8 | 7 | simp3bi 1147 | . 2 ⊢ (𝑈 ∈ 𝑆 → ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
9 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎)) | |
10 | 9 | oveq1d 7463 | . . . 4 ⊢ (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏)) |
11 | 10 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈)) |
12 | oveq2 7456 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋)) | |
13 | 12 | oveq1d 7463 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏)) |
14 | 13 | eleq1d 2829 | . . 3 ⊢ (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈)) |
15 | oveq2 7456 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌)) | |
16 | 15 | eleq1d 2829 | . . 3 ⊢ (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
17 | 11, 14, 16 | rspc3v 3651 | . 2 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
18 | 8, 17 | mpan9 506 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 LSubSpclss 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-lss 20953 |
This theorem is referenced by: lssvacl 20964 lssvsubcl 20965 lssvscl 20976 islss3 20980 lssintcl 20985 lspsolvlem 21167 lbsextlem2 21184 isphld 21695 |
Copyright terms: Public domain | W3C validator |