| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsscl | Structured version Visualization version GIF version | ||
| Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lsscl.b | ⊢ 𝐵 = (Base‘𝐹) |
| lsscl.p | ⊢ + = (+g‘𝑊) |
| lsscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lsscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsscl | ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsscl.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | lsscl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | lsscl.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 5 | lsscl.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | lsscl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islss 20847 | . . 3 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
| 8 | 7 | simp3bi 1147 | . 2 ⊢ (𝑈 ∈ 𝑆 → ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
| 9 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎)) | |
| 10 | 9 | oveq1d 7405 | . . . 4 ⊢ (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏)) |
| 11 | 10 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈)) |
| 12 | oveq2 7398 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋)) | |
| 13 | 12 | oveq1d 7405 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏)) |
| 14 | 13 | eleq1d 2814 | . . 3 ⊢ (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈)) |
| 15 | oveq2 7398 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌)) | |
| 16 | 15 | eleq1d 2814 | . . 3 ⊢ (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
| 17 | 11, 14, 16 | rspc3v 3607 | . 2 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
| 18 | 8, 17 | mpan9 506 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 LSubSpclss 20844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-lss 20845 |
| This theorem is referenced by: lssvacl 20856 lssvsubcl 20857 lssvscl 20868 islss3 20872 lssintcl 20877 lspsolvlem 21059 lbsextlem2 21076 isphld 21570 |
| Copyright terms: Public domain | W3C validator |