Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsscl | Structured version Visualization version GIF version |
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lsscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lsscl.b | ⊢ 𝐵 = (Base‘𝐹) |
lsscl.p | ⊢ + = (+g‘𝑊) |
lsscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lsscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsscl | ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsscl.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | lsscl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | lsscl.p | . . . 4 ⊢ + = (+g‘𝑊) | |
5 | lsscl.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | lsscl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20111 | . . 3 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
8 | 7 | simp3bi 1145 | . 2 ⊢ (𝑈 ∈ 𝑆 → ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
9 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎)) | |
10 | 9 | oveq1d 7270 | . . . 4 ⊢ (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏)) |
11 | 10 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈)) |
12 | oveq2 7263 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋)) | |
13 | 12 | oveq1d 7270 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏)) |
14 | 13 | eleq1d 2823 | . . 3 ⊢ (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈)) |
15 | oveq2 7263 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌)) | |
16 | 15 | eleq1d 2823 | . . 3 ⊢ (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
17 | 11, 14, 16 | rspc3v 3565 | . 2 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
18 | 8, 17 | mpan9 506 | 1 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-lss 20109 |
This theorem is referenced by: lssvsubcl 20120 lssvacl 20131 lssvscl 20132 islss3 20136 lssintcl 20141 lspsolvlem 20319 lbsextlem2 20336 isphld 20771 |
Copyright terms: Public domain | W3C validator |