MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsscl Structured version   Visualization version   GIF version

Theorem lsscl 19261
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f 𝐹 = (Scalar‘𝑊)
lsscl.b 𝐵 = (Base‘𝐹)
lsscl.p + = (+g𝑊)
lsscl.t · = ( ·𝑠𝑊)
lsscl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsscl ((𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)

Proof of Theorem lsscl
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsscl.f . . . 4 𝐹 = (Scalar‘𝑊)
2 lsscl.b . . . 4 𝐵 = (Base‘𝐹)
3 eqid 2799 . . . 4 (Base‘𝑊) = (Base‘𝑊)
4 lsscl.p . . . 4 + = (+g𝑊)
5 lsscl.t . . . 4 · = ( ·𝑠𝑊)
6 lsscl.s . . . 4 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islss 19253 . . 3 (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
87simp3bi 1178 . 2 (𝑈𝑆 → ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
9 oveq1 6885 . . . . 5 (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎))
109oveq1d 6893 . . . 4 (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏))
1110eleq1d 2863 . . 3 (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈))
12 oveq2 6886 . . . . 5 (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋))
1312oveq1d 6893 . . . 4 (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏))
1413eleq1d 2863 . . 3 (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈))
15 oveq2 6886 . . . 4 (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌))
1615eleq1d 2863 . . 3 (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
1711, 14, 16rspc3v 3513 . 2 ((𝑍𝐵𝑋𝑈𝑌𝑈) → (∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
188, 17mpan9 503 1 ((𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  wss 3769  c0 4115  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  Scalarcsca 16270   ·𝑠 cvsca 16271  LSubSpclss 19250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6881  df-lss 19251
This theorem is referenced by:  lssvsubcl  19262  lssvacl  19275  lssvscl  19276  islss3  19280  lssintcl  19285  lspsolvlem  19464  lbsextlem2  19482  isphld  20323
  Copyright terms: Public domain W3C validator