![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsscl | Structured version Visualization version GIF version |
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lsscl.f | β’ πΉ = (Scalarβπ) |
lsscl.b | β’ π΅ = (BaseβπΉ) |
lsscl.p | β’ + = (+gβπ) |
lsscl.t | β’ Β· = ( Β·π βπ) |
lsscl.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lsscl | β’ ((π β π β§ (π β π΅ β§ π β π β§ π β π)) β ((π Β· π) + π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsscl.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lsscl.b | . . . 4 β’ π΅ = (BaseβπΉ) | |
3 | eqid 2728 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
4 | lsscl.p | . . . 4 β’ + = (+gβπ) | |
5 | lsscl.t | . . . 4 β’ Β· = ( Β·π βπ) | |
6 | lsscl.s | . . . 4 β’ π = (LSubSpβπ) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20817 | . . 3 β’ (π β π β (π β (Baseβπ) β§ π β β β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π)) |
8 | 7 | simp3bi 1145 | . 2 β’ (π β π β βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π) |
9 | oveq1 7427 | . . . . 5 β’ (π₯ = π β (π₯ Β· π) = (π Β· π)) | |
10 | 9 | oveq1d 7435 | . . . 4 β’ (π₯ = π β ((π₯ Β· π) + π) = ((π Β· π) + π)) |
11 | 10 | eleq1d 2814 | . . 3 β’ (π₯ = π β (((π₯ Β· π) + π) β π β ((π Β· π) + π) β π)) |
12 | oveq2 7428 | . . . . 5 β’ (π = π β (π Β· π) = (π Β· π)) | |
13 | 12 | oveq1d 7435 | . . . 4 β’ (π = π β ((π Β· π) + π) = ((π Β· π) + π)) |
14 | 13 | eleq1d 2814 | . . 3 β’ (π = π β (((π Β· π) + π) β π β ((π Β· π) + π) β π)) |
15 | oveq2 7428 | . . . 4 β’ (π = π β ((π Β· π) + π) = ((π Β· π) + π)) | |
16 | 15 | eleq1d 2814 | . . 3 β’ (π = π β (((π Β· π) + π) β π β ((π Β· π) + π) β π)) |
17 | 11, 14, 16 | rspc3v 3625 | . 2 β’ ((π β π΅ β§ π β π β§ π β π) β (βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π β ((π Β· π) + π) β π)) |
18 | 8, 17 | mpan9 506 | 1 β’ ((π β π β§ (π β π΅ β§ π β π β§ π β π)) β ((π Β· π) + π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wne 2937 βwral 3058 β wss 3947 β c0 4323 βcfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 Β·π cvsca 17236 LSubSpclss 20814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-lss 20815 |
This theorem is referenced by: lssvacl 20826 lssvsubcl 20827 lssvscl 20838 islss3 20842 lssintcl 20847 lspsolvlem 21029 lbsextlem2 21046 isphld 21585 |
Copyright terms: Public domain | W3C validator |