![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsscl | Structured version Visualization version GIF version |
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lsscl.f | β’ πΉ = (Scalarβπ) |
lsscl.b | β’ π΅ = (BaseβπΉ) |
lsscl.p | β’ + = (+gβπ) |
lsscl.t | β’ Β· = ( Β·π βπ) |
lsscl.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lsscl | β’ ((π β π β§ (π β π΅ β§ π β π β§ π β π)) β ((π Β· π) + π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsscl.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lsscl.b | . . . 4 β’ π΅ = (BaseβπΉ) | |
3 | eqid 2724 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
4 | lsscl.p | . . . 4 β’ + = (+gβπ) | |
5 | lsscl.t | . . . 4 β’ Β· = ( Β·π βπ) | |
6 | lsscl.s | . . . 4 β’ π = (LSubSpβπ) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20777 | . . 3 β’ (π β π β (π β (Baseβπ) β§ π β β β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π)) |
8 | 7 | simp3bi 1144 | . 2 β’ (π β π β βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π) |
9 | oveq1 7409 | . . . . 5 β’ (π₯ = π β (π₯ Β· π) = (π Β· π)) | |
10 | 9 | oveq1d 7417 | . . . 4 β’ (π₯ = π β ((π₯ Β· π) + π) = ((π Β· π) + π)) |
11 | 10 | eleq1d 2810 | . . 3 β’ (π₯ = π β (((π₯ Β· π) + π) β π β ((π Β· π) + π) β π)) |
12 | oveq2 7410 | . . . . 5 β’ (π = π β (π Β· π) = (π Β· π)) | |
13 | 12 | oveq1d 7417 | . . . 4 β’ (π = π β ((π Β· π) + π) = ((π Β· π) + π)) |
14 | 13 | eleq1d 2810 | . . 3 β’ (π = π β (((π Β· π) + π) β π β ((π Β· π) + π) β π)) |
15 | oveq2 7410 | . . . 4 β’ (π = π β ((π Β· π) + π) = ((π Β· π) + π)) | |
16 | 15 | eleq1d 2810 | . . 3 β’ (π = π β (((π Β· π) + π) β π β ((π Β· π) + π) β π)) |
17 | 11, 14, 16 | rspc3v 3620 | . 2 β’ ((π β π΅ β§ π β π β§ π β π) β (βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π β ((π Β· π) + π) β π)) |
18 | 8, 17 | mpan9 506 | 1 β’ ((π β π β§ (π β π΅ β§ π β π β§ π β π)) β ((π Β· π) + π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βwral 3053 β wss 3941 β c0 4315 βcfv 6534 (class class class)co 7402 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 Β·π cvsca 17206 LSubSpclss 20774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-lss 20775 |
This theorem is referenced by: lssvacl 20786 lssvsubcl 20787 lssvscl 20798 islss3 20802 lssintcl 20807 lspsolvlem 20989 lbsextlem2 21006 isphld 21536 |
Copyright terms: Public domain | W3C validator |