MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsscl Structured version   Visualization version   GIF version

Theorem lsscl 20884
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f 𝐹 = (Scalar‘𝑊)
lsscl.b 𝐵 = (Base‘𝐹)
lsscl.p + = (+g𝑊)
lsscl.t · = ( ·𝑠𝑊)
lsscl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsscl ((𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)

Proof of Theorem lsscl
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsscl.f . . . 4 𝐹 = (Scalar‘𝑊)
2 lsscl.b . . . 4 𝐵 = (Base‘𝐹)
3 eqid 2733 . . . 4 (Base‘𝑊) = (Base‘𝑊)
4 lsscl.p . . . 4 + = (+g𝑊)
5 lsscl.t . . . 4 · = ( ·𝑠𝑊)
6 lsscl.s . . . 4 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islss 20876 . . 3 (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
87simp3bi 1147 . 2 (𝑈𝑆 → ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
9 oveq1 7362 . . . . 5 (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎))
109oveq1d 7370 . . . 4 (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏))
1110eleq1d 2818 . . 3 (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈))
12 oveq2 7363 . . . . 5 (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋))
1312oveq1d 7370 . . . 4 (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏))
1413eleq1d 2818 . . 3 (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈))
15 oveq2 7363 . . . 4 (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌))
1615eleq1d 2818 . . 3 (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
1711, 14, 16rspc3v 3589 . 2 ((𝑍𝐵𝑋𝑈𝑌𝑈) → (∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
188, 17mpan9 506 1 ((𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wss 3898  c0 4282  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  Scalarcsca 17171   ·𝑠 cvsca 17172  LSubSpclss 20873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-lss 20874
This theorem is referenced by:  lssvacl  20885  lssvsubcl  20886  lssvscl  20897  islss3  20901  lssintcl  20906  lspsolvlem  21088  lbsextlem2  21105  isphld  21600
  Copyright terms: Public domain W3C validator