![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsscl | Structured version Visualization version GIF version |
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lsscl.f | β’ πΉ = (Scalarβπ) |
lsscl.b | β’ π΅ = (BaseβπΉ) |
lsscl.p | β’ + = (+gβπ) |
lsscl.t | β’ Β· = ( Β·π βπ) |
lsscl.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lsscl | β’ ((π β π β§ (π β π΅ β§ π β π β§ π β π)) β ((π Β· π) + π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsscl.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lsscl.b | . . . 4 β’ π΅ = (BaseβπΉ) | |
3 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
4 | lsscl.p | . . . 4 β’ + = (+gβπ) | |
5 | lsscl.t | . . . 4 β’ Β· = ( Β·π βπ) | |
6 | lsscl.s | . . . 4 β’ π = (LSubSpβπ) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20544 | . . 3 β’ (π β π β (π β (Baseβπ) β§ π β β β§ βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π)) |
8 | 7 | simp3bi 1147 | . 2 β’ (π β π β βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π) |
9 | oveq1 7415 | . . . . 5 β’ (π₯ = π β (π₯ Β· π) = (π Β· π)) | |
10 | 9 | oveq1d 7423 | . . . 4 β’ (π₯ = π β ((π₯ Β· π) + π) = ((π Β· π) + π)) |
11 | 10 | eleq1d 2818 | . . 3 β’ (π₯ = π β (((π₯ Β· π) + π) β π β ((π Β· π) + π) β π)) |
12 | oveq2 7416 | . . . . 5 β’ (π = π β (π Β· π) = (π Β· π)) | |
13 | 12 | oveq1d 7423 | . . . 4 β’ (π = π β ((π Β· π) + π) = ((π Β· π) + π)) |
14 | 13 | eleq1d 2818 | . . 3 β’ (π = π β (((π Β· π) + π) β π β ((π Β· π) + π) β π)) |
15 | oveq2 7416 | . . . 4 β’ (π = π β ((π Β· π) + π) = ((π Β· π) + π)) | |
16 | 15 | eleq1d 2818 | . . 3 β’ (π = π β (((π Β· π) + π) β π β ((π Β· π) + π) β π)) |
17 | 11, 14, 16 | rspc3v 3627 | . 2 β’ ((π β π΅ β§ π β π β§ π β π) β (βπ₯ β π΅ βπ β π βπ β π ((π₯ Β· π) + π) β π β ((π Β· π) + π) β π)) |
18 | 8, 17 | mpan9 507 | 1 β’ ((π β π β§ (π β π΅ β§ π β π β§ π β π)) β ((π Β· π) + π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β wss 3948 β c0 4322 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 Β·π cvsca 17200 LSubSpclss 20541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-lss 20542 |
This theorem is referenced by: lssvsubcl 20553 lssvacl 20564 lssvscl 20565 islss3 20569 lssintcl 20574 lspsolvlem 20754 lbsextlem2 20771 isphld 21206 |
Copyright terms: Public domain | W3C validator |