MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvscl Structured version   Visualization version   GIF version

Theorem lssvscl 20897
Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvscl.f 𝐹 = (Scalar‘𝑊)
lssvscl.t · = ( ·𝑠𝑊)
lssvscl.b 𝐵 = (Base‘𝐹)
lssvscl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvscl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem lssvscl
StepHypRef Expression
1 simpll 766 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑊 ∈ LMod)
2 simprl 770 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑋𝐵)
3 eqid 2733 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 lssvscl.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
53, 4lssel 20879 . . . . 5 ((𝑈𝑆𝑌𝑈) → 𝑌 ∈ (Base‘𝑊))
65ad2ant2l 746 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑌 ∈ (Base‘𝑊))
7 lssvscl.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lssvscl.t . . . . 5 · = ( ·𝑠𝑊)
9 lssvscl.b . . . . 5 𝐵 = (Base‘𝐹)
103, 7, 8, 9lmodvscl 20820 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐵𝑌 ∈ (Base‘𝑊)) → (𝑋 · 𝑌) ∈ (Base‘𝑊))
111, 2, 6, 10syl3anc 1373 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ (Base‘𝑊))
12 eqid 2733 . . . 4 (+g𝑊) = (+g𝑊)
13 eqid 2733 . . . 4 (0g𝑊) = (0g𝑊)
143, 12, 13lmod0vrid 20835 . . 3 ((𝑊 ∈ LMod ∧ (𝑋 · 𝑌) ∈ (Base‘𝑊)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) = (𝑋 · 𝑌))
151, 11, 14syl2anc 584 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) = (𝑋 · 𝑌))
16 simplr 768 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑈𝑆)
17 simprr 772 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑌𝑈)
1813, 4lss0cl 20889 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
1918adantr 480 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (0g𝑊) ∈ 𝑈)
207, 9, 12, 8, 4lsscl 20884 . . 3 ((𝑈𝑆 ∧ (𝑋𝐵𝑌𝑈 ∧ (0g𝑊) ∈ 𝑈)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) ∈ 𝑈)
2116, 2, 17, 19, 20syl13anc 1374 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) ∈ 𝑈)
2215, 21eqeltrrd 2834 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  Scalarcsca 17171   ·𝑠 cvsca 17172  0gc0g 17350  LModclmod 20802  LSubSpclss 20873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mgp 20067  df-ur 20108  df-ring 20161  df-lmod 20804  df-lss 20874
This theorem is referenced by:  lssvnegcl  20898  islss3  20901  islss4  20904  ellspsni  20943  lspsn  20944  lmhmima  20990  lmhmpreima  20991  reslmhm  20995  lsmcl  21026  pj1lmhm  21043  lssvs0or  21056  lspfixed  21074  lspexch  21075  lspsolv  21089  frlmssuvc1  21740  frlmsslsp  21742  mplbas2  21988  lssnlm  24636  minveclem2  25373  pjthlem1  25384  eqgvscpbl  33359  lindsunlem  33709  algextdeglem8  33809  lshpkrlem5  39286  ldualssvscl  39330  dochkr1  41650  dochkr1OLDN  41651  lclkrlem2o  41693  lcfrlem5  41718  lcdlssvscl  41778  hgmapvvlem3  42097  gsumlsscl  48542
  Copyright terms: Public domain W3C validator