| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssvscl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lssvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lssvscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lssvscl.b | ⊢ 𝐵 = (Base‘𝐹) |
| lssvscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssvscl | ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
| 3 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | lssvscl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | 3, 4 | lssel 20879 | . . . . 5 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑊)) |
| 6 | 5 | ad2ant2l 746 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ (Base‘𝑊)) |
| 7 | lssvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | lssvscl.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lssvscl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 10 | 3, 7, 8, 9 | lmodvscl 20820 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 · 𝑌) ∈ (Base‘𝑊)) |
| 11 | 1, 2, 6, 10 | syl3anc 1373 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ (Base‘𝑊)) |
| 12 | eqid 2733 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 13 | eqid 2733 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 14 | 3, 12, 13 | lmod0vrid 20835 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 · 𝑌) ∈ (Base‘𝑊)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) = (𝑋 · 𝑌)) |
| 15 | 1, 11, 14 | syl2anc 584 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) = (𝑋 · 𝑌)) |
| 16 | simplr 768 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
| 17 | simprr 772 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | |
| 18 | 13, 4 | lss0cl 20889 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (0g‘𝑊) ∈ 𝑈) |
| 19 | 18 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (0g‘𝑊) ∈ 𝑈) |
| 20 | 7, 9, 12, 8, 4 | lsscl 20884 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ (0g‘𝑊) ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) ∈ 𝑈) |
| 21 | 16, 2, 17, 19, 20 | syl13anc 1374 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) ∈ 𝑈) |
| 22 | 15, 21 | eqeltrrd 2834 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 LModclmod 20802 LSubSpclss 20873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mgp 20067 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 |
| This theorem is referenced by: lssvnegcl 20898 islss3 20901 islss4 20904 ellspsni 20943 lspsn 20944 lmhmima 20990 lmhmpreima 20991 reslmhm 20995 lsmcl 21026 pj1lmhm 21043 lssvs0or 21056 lspfixed 21074 lspexch 21075 lspsolv 21089 frlmssuvc1 21740 frlmsslsp 21742 mplbas2 21988 lssnlm 24636 minveclem2 25373 pjthlem1 25384 eqgvscpbl 33359 lindsunlem 33709 algextdeglem8 33809 lshpkrlem5 39286 ldualssvscl 39330 dochkr1 41650 dochkr1OLDN 41651 lclkrlem2o 41693 lcfrlem5 41718 lcdlssvscl 41778 hgmapvvlem3 42097 gsumlsscl 48542 |
| Copyright terms: Public domain | W3C validator |