MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvscl Structured version   Visualization version   GIF version

Theorem lssvscl 20953
Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvscl.f 𝐹 = (Scalar‘𝑊)
lssvscl.t · = ( ·𝑠𝑊)
lssvscl.b 𝐵 = (Base‘𝐹)
lssvscl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvscl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem lssvscl
StepHypRef Expression
1 simpll 767 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑊 ∈ LMod)
2 simprl 771 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑋𝐵)
3 eqid 2737 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 lssvscl.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
53, 4lssel 20935 . . . . 5 ((𝑈𝑆𝑌𝑈) → 𝑌 ∈ (Base‘𝑊))
65ad2ant2l 746 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑌 ∈ (Base‘𝑊))
7 lssvscl.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lssvscl.t . . . . 5 · = ( ·𝑠𝑊)
9 lssvscl.b . . . . 5 𝐵 = (Base‘𝐹)
103, 7, 8, 9lmodvscl 20876 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐵𝑌 ∈ (Base‘𝑊)) → (𝑋 · 𝑌) ∈ (Base‘𝑊))
111, 2, 6, 10syl3anc 1373 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ (Base‘𝑊))
12 eqid 2737 . . . 4 (+g𝑊) = (+g𝑊)
13 eqid 2737 . . . 4 (0g𝑊) = (0g𝑊)
143, 12, 13lmod0vrid 20891 . . 3 ((𝑊 ∈ LMod ∧ (𝑋 · 𝑌) ∈ (Base‘𝑊)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) = (𝑋 · 𝑌))
151, 11, 14syl2anc 584 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) = (𝑋 · 𝑌))
16 simplr 769 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑈𝑆)
17 simprr 773 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → 𝑌𝑈)
1813, 4lss0cl 20945 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
1918adantr 480 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (0g𝑊) ∈ 𝑈)
207, 9, 12, 8, 4lsscl 20940 . . 3 ((𝑈𝑆 ∧ (𝑋𝐵𝑌𝑈 ∧ (0g𝑊) ∈ 𝑈)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) ∈ 𝑈)
2116, 2, 17, 19, 20syl13anc 1374 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → ((𝑋 · 𝑌)(+g𝑊)(0g𝑊)) ∈ 𝑈)
2215, 21eqeltrrd 2842 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝐵𝑌𝑈)) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LModclmod 20858  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930
This theorem is referenced by:  lssvnegcl  20954  islss3  20957  islss4  20960  ellspsni  20999  lspsn  21000  lmhmima  21046  lmhmpreima  21047  reslmhm  21051  lsmcl  21082  pj1lmhm  21099  lssvs0or  21112  lspfixed  21130  lspexch  21131  lspsolv  21145  frlmssuvc1  21814  frlmsslsp  21816  mplbas2  22060  lssnlm  24722  minveclem2  25460  pjthlem1  25471  eqgvscpbl  33378  lindsunlem  33675  algextdeglem8  33765  lshpkrlem5  39115  ldualssvscl  39159  dochkr1  41480  dochkr1OLDN  41481  lclkrlem2o  41523  lcfrlem5  41548  lcdlssvscl  41608  hgmapvvlem3  41927  gsumlsscl  48296
  Copyright terms: Public domain W3C validator