| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssvscl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lssvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lssvscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lssvscl.b | ⊢ 𝐵 = (Base‘𝐹) |
| lssvscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssvscl | ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | lssvscl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | 3, 4 | lssel 20865 | . . . . 5 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑊)) |
| 6 | 5 | ad2ant2l 746 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ (Base‘𝑊)) |
| 7 | lssvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | lssvscl.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lssvscl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 10 | 3, 7, 8, 9 | lmodvscl 20806 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 · 𝑌) ∈ (Base‘𝑊)) |
| 11 | 1, 2, 6, 10 | syl3anc 1373 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ (Base‘𝑊)) |
| 12 | eqid 2731 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 13 | eqid 2731 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 14 | 3, 12, 13 | lmod0vrid 20821 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 · 𝑌) ∈ (Base‘𝑊)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) = (𝑋 · 𝑌)) |
| 15 | 1, 11, 14 | syl2anc 584 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) = (𝑋 · 𝑌)) |
| 16 | simplr 768 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
| 17 | simprr 772 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | |
| 18 | 13, 4 | lss0cl 20875 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (0g‘𝑊) ∈ 𝑈) |
| 19 | 18 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (0g‘𝑊) ∈ 𝑈) |
| 20 | 7, 9, 12, 8, 4 | lsscl 20870 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ (0g‘𝑊) ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) ∈ 𝑈) |
| 21 | 16, 2, 17, 19, 20 | syl13anc 1374 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) ∈ 𝑈) |
| 22 | 15, 21 | eqeltrrd 2832 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 LModclmod 20788 LSubSpclss 20859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mgp 20054 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 |
| This theorem is referenced by: lssvnegcl 20884 islss3 20887 islss4 20890 ellspsni 20929 lspsn 20930 lmhmima 20976 lmhmpreima 20977 reslmhm 20981 lsmcl 21012 pj1lmhm 21029 lssvs0or 21042 lspfixed 21060 lspexch 21061 lspsolv 21075 frlmssuvc1 21726 frlmsslsp 21728 mplbas2 21972 lssnlm 24611 minveclem2 25348 pjthlem1 25359 eqgvscpbl 33307 lindsunlem 33629 algextdeglem8 33729 lshpkrlem5 39153 ldualssvscl 39197 dochkr1 41517 dochkr1OLDN 41518 lclkrlem2o 41560 lcfrlem5 41585 lcdlssvscl 41645 hgmapvvlem3 41964 gsumlsscl 48411 |
| Copyright terms: Public domain | W3C validator |