Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvacl Structured version   Visualization version   GIF version

Theorem lssvacl 19717
 Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvacl.p + = (+g𝑊)
lssvacl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvacl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvacl
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑊 ∈ LMod)
2 eqid 2822 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 lssvacl.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
42, 3lssel 19700 . . . . 5 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
54ad2ant2lr 747 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋 ∈ (Base‘𝑊))
6 eqid 2822 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2822 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2822 . . . . 5 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
92, 6, 7, 8lmodvs1 19653 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
101, 5, 9syl2anc 587 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
1110oveq1d 7155 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) = (𝑋 + 𝑌))
12 simplr 768 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑈𝑆)
13 eqid 2822 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
146, 13, 8lmod1cl 19652 . . . 4 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1514ad2antrr 725 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
16 simprl 770 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋𝑈)
17 simprr 772 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌𝑈)
18 lssvacl.p . . . 4 + = (+g𝑊)
196, 13, 18, 7, 3lsscl 19705 . . 3 ((𝑈𝑆 ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) ∈ 𝑈)
2012, 15, 16, 17, 19syl13anc 1369 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) ∈ 𝑈)
2111, 20eqeltrrd 2915 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  Scalarcsca 16559   ·𝑠 cvsca 16560  1rcur 19242  LModclmod 19625  LSubSpclss 19694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mgp 19231  df-ur 19243  df-ring 19290  df-lmod 19627  df-lss 19695 This theorem is referenced by:  lsssubg  19720  lspprvacl  19762  lspvadd  19859  lidlacl  19977  minveclem2  24028  pjthlem2  24040  lshpkrlem5  36369  lcfrlem6  38802  lcfrlem19  38816  mapdpglem9  38935  mapdpglem14  38940
 Copyright terms: Public domain W3C validator