MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvacl Structured version   Visualization version   GIF version

Theorem lssvacl 20261
Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvacl.p + = (+g𝑊)
lssvacl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvacl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvacl
StepHypRef Expression
1 simpll 765 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑊 ∈ LMod)
2 eqid 2736 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 lssvacl.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
42, 3lssel 20244 . . . . 5 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
54ad2ant2lr 746 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋 ∈ (Base‘𝑊))
6 eqid 2736 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2736 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2736 . . . . 5 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
92, 6, 7, 8lmodvs1 20196 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
101, 5, 9syl2anc 585 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
1110oveq1d 7322 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) = (𝑋 + 𝑌))
12 simplr 767 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑈𝑆)
13 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
146, 13, 8lmod1cl 20195 . . . 4 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1514ad2antrr 724 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
16 simprl 769 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋𝑈)
17 simprr 771 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌𝑈)
18 lssvacl.p . . . 4 + = (+g𝑊)
196, 13, 18, 7, 3lsscl 20249 . . 3 ((𝑈𝑆 ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) ∈ 𝑈)
2012, 15, 16, 17, 19syl13anc 1372 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + 𝑌) ∈ 𝑈)
2111, 20eqeltrrd 2838 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  Basecbs 16957  +gcplusg 17007  Scalarcsca 17010   ·𝑠 cvsca 17011  1rcur 19782  LModclmod 20168  LSubSpclss 20238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mgp 19766  df-ur 19783  df-ring 19830  df-lmod 20170  df-lss 20239
This theorem is referenced by:  lsssubg  20264  lspprvacl  20306  lspvadd  20403  lidlacl  20529  minveclem2  24635  pjthlem2  24647  lshpkrlem5  37170  lcfrlem6  39603  lcfrlem19  39617  mapdpglem9  39736  mapdpglem14  39741
  Copyright terms: Public domain W3C validator