Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssvacl.p | ⊢ + = (+g‘𝑊) |
lssvacl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssvacl | ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | |
2 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lssvacl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssel 20244 | . . . . 5 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
5 | 4 | ad2ant2lr 746 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ (Base‘𝑊)) |
6 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
8 | eqid 2736 | . . . . 5 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 2, 6, 7, 8 | lmodvs1 20196 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
10 | 1, 5, 9 | syl2anc 585 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
11 | 10 | oveq1d 7322 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) = (𝑋 + 𝑌)) |
12 | simplr 767 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
13 | eqid 2736 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
14 | 6, 13, 8 | lmod1cl 20195 | . . . 4 ⊢ (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
15 | 14 | ad2antrr 724 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
16 | simprl 769 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝑈) | |
17 | simprr 771 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | |
18 | lssvacl.p | . . . 4 ⊢ + = (+g‘𝑊) | |
19 | 6, 13, 18, 7, 3 | lsscl 20249 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) ∈ 𝑈) |
20 | 12, 15, 16, 17, 19 | syl13anc 1372 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) ∈ 𝑈) |
21 | 11, 20 | eqeltrrd 2838 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 Scalarcsca 17010 ·𝑠 cvsca 17011 1rcur 19782 LModclmod 20168 LSubSpclss 20238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mgp 19766 df-ur 19783 df-ring 19830 df-lmod 20170 df-lss 20239 |
This theorem is referenced by: lsssubg 20264 lspprvacl 20306 lspvadd 20403 lidlacl 20529 minveclem2 24635 pjthlem2 24647 lshpkrlem5 37170 lcfrlem6 39603 lcfrlem19 39617 mapdpglem9 39736 mapdpglem14 39741 |
Copyright terms: Public domain | W3C validator |