MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvsubcl Structured version   Visualization version   GIF version

Theorem lssvsubcl 20942
Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvsubcl.m = (-g𝑊)
lssvsubcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvsubcl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) ∈ 𝑈)

Proof of Theorem lssvsubcl
StepHypRef Expression
1 simpll 767 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑊 ∈ LMod)
2 eqid 2737 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
3 lssvsubcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssel 20935 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
54ad2ant2lr 748 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋 ∈ (Base‘𝑊))
62, 3lssel 20935 . . . 4 ((𝑈𝑆𝑌𝑈) → 𝑌 ∈ (Base‘𝑊))
76ad2ant2l 746 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌 ∈ (Base‘𝑊))
8 eqid 2737 . . . 4 (+g𝑊) = (+g𝑊)
9 lssvsubcl.m . . . 4 = (-g𝑊)
10 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2737 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
12 eqid 2737 . . . 4 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
13 eqid 2737 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
142, 8, 9, 10, 11, 12, 13lmodvsubval2 20915 . . 3 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
151, 5, 7, 14syl3anc 1373 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1610lmodfgrp 20867 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
171, 16syl 17 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (Scalar‘𝑊) ∈ Grp)
18 eqid 2737 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
1910, 18, 13lmod1cl 20887 . . . . . . 7 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
201, 19syl 17 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2118, 12grpinvcl 19005 . . . . . 6 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2217, 20, 21syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
232, 10, 11, 18lmodvscl 20876 . . . . 5 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) ∈ (Base‘𝑊))
241, 22, 7, 23syl3anc 1373 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) ∈ (Base‘𝑊))
252, 8lmodcom 20906 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) ∈ (Base‘𝑊)) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
261, 5, 24, 25syl3anc 1373 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
27 simplr 769 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑈𝑆)
28 simprr 773 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌𝑈)
29 simprl 771 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋𝑈)
3010, 18, 8, 11, 3lsscl 20940 . . . 4 ((𝑈𝑆 ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑈𝑋𝑈)) → ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ 𝑈)
3127, 22, 28, 29, 30syl13anc 1374 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ 𝑈)
3226, 31eqeltrd 2841 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) ∈ 𝑈)
3315, 32eqeltrd 2841 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953  1rcur 20178  LModclmod 20858  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930
This theorem is referenced by:  lssvancl1  20943  lss0cl  20945  lsmcv  21143  lspsolv  21145  lindsunlem  33675  ldualssvsubcl  39160  lclkrlem2o  41523  mapdpglem6  41680  mapdpglem12  41685  hdmaprnlem7N  41857  hdmaprnlem8N  41858
  Copyright terms: Public domain W3C validator