MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvsubcl Structured version   Visualization version   GIF version

Theorem lssvsubcl 20857
Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssvsubcl.m = (-g𝑊)
lssvsubcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssvsubcl (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) ∈ 𝑈)

Proof of Theorem lssvsubcl
StepHypRef Expression
1 simpll 766 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑊 ∈ LMod)
2 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
3 lssvsubcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssel 20850 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
54ad2ant2lr 748 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋 ∈ (Base‘𝑊))
62, 3lssel 20850 . . . 4 ((𝑈𝑆𝑌𝑈) → 𝑌 ∈ (Base‘𝑊))
76ad2ant2l 746 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌 ∈ (Base‘𝑊))
8 eqid 2730 . . . 4 (+g𝑊) = (+g𝑊)
9 lssvsubcl.m . . . 4 = (-g𝑊)
10 eqid 2730 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2730 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
12 eqid 2730 . . . 4 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
13 eqid 2730 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
142, 8, 9, 10, 11, 12, 13lmodvsubval2 20830 . . 3 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
151, 5, 7, 14syl3anc 1373 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1610lmodfgrp 20782 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
171, 16syl 17 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (Scalar‘𝑊) ∈ Grp)
18 eqid 2730 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
1910, 18, 13lmod1cl 20802 . . . . . . 7 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
201, 19syl 17 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2118, 12grpinvcl 18926 . . . . . 6 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2217, 20, 21syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
232, 10, 11, 18lmodvscl 20791 . . . . 5 ((𝑊 ∈ LMod ∧ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) ∈ (Base‘𝑊))
241, 22, 7, 23syl3anc 1373 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) ∈ (Base‘𝑊))
252, 8lmodcom 20821 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) ∈ (Base‘𝑊)) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
261, 5, 24, 25syl3anc 1373 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
27 simplr 768 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑈𝑆)
28 simprr 772 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑌𝑈)
29 simprl 770 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → 𝑋𝑈)
3010, 18, 8, 11, 3lsscl 20855 . . . 4 ((𝑈𝑆 ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑈𝑋𝑈)) → ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ 𝑈)
3127, 22, 28, 29, 30syl13anc 1374 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → ((((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ 𝑈)
3226, 31eqeltrd 2829 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋(+g𝑊)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) ∈ 𝑈)
3315, 32eqeltrd 2829 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874  1rcur 20097  LModclmod 20773  LSubSpclss 20844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845
This theorem is referenced by:  lssvancl1  20858  lss0cl  20860  lsmcv  21058  lspsolv  21060  lindsunlem  33627  ldualssvsubcl  39159  lclkrlem2o  41522  mapdpglem6  41679  mapdpglem12  41684  hdmaprnlem7N  41856  hdmaprnlem8N  41857
  Copyright terms: Public domain W3C validator