Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval Structured version   Visualization version   GIF version

Theorem mapdval 41666
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
mapdval.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   𝑀(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem mapdval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mapdval.k . . . 4 (𝜑 → (𝐾𝑋𝑊𝐻))
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
5 mapdval.f . . . . 5 𝐹 = (LFnl‘𝑈)
6 mapdval.l . . . . 5 𝐿 = (LKer‘𝑈)
7 mapdval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
92, 3, 4, 5, 6, 7, 8mapdfval 41665 . . . 4 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
101, 9syl 17 . . 3 (𝜑𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
1110fveq1d 6824 . 2 (𝜑 → (𝑀𝑇) = ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇))
12 mapdval.t . . 3 (𝜑𝑇𝑆)
135fvexi 6836 . . . 4 𝐹 ∈ V
1413rabex 5277 . . 3 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V
15 sseq2 3961 . . . . . 6 (𝑠 = 𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑇))
1615anbi2d 630 . . . . 5 (𝑠 = 𝑇 → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)))
1716rabbidv 3402 . . . 4 (𝑠 = 𝑇 → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
18 eqid 2731 . . . 4 (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
1917, 18fvmptg 6927 . . 3 ((𝑇𝑆 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V) → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2012, 14, 19sylancl 586 . 2 (𝜑 → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2111, 20eqtrd 2766 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  cmpt 5172  cfv 6481  LSubSpclss 20862  LFnlclfn 39095  LKerclk 39123  LHypclh 40022  DVecHcdvh 41116  ocHcoch 41385  mapdcmpd 41662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-mapd 41663
This theorem is referenced by:  mapdvalc  41667  mapddlssN  41678  mapdsn  41679  mapd1o  41686  mapd0  41703
  Copyright terms: Public domain W3C validator