Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval Structured version   Visualization version   GIF version

Theorem mapdval 40487
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHypβ€˜πΎ)
mapdval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
mapdval.f 𝐹 = (LFnlβ€˜π‘ˆ)
mapdval.l 𝐿 = (LKerβ€˜π‘ˆ)
mapdval.o 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
mapdval.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdval.k (πœ‘ β†’ (𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻))
mapdval.t (πœ‘ β†’ 𝑇 ∈ 𝑆)
Assertion
Ref Expression
mapdval (πœ‘ β†’ (π‘€β€˜π‘‡) = {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)})
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,π‘Š   𝑇,𝑓
Allowed substitution hints:   πœ‘(𝑓)   𝑆(𝑓)   π‘ˆ(𝑓)   𝐻(𝑓)   𝐿(𝑓)   𝑀(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem mapdval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mapdval.k . . . 4 (πœ‘ β†’ (𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻))
2 mapdval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
3 mapdval.u . . . . 5 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 mapdval.s . . . . 5 𝑆 = (LSubSpβ€˜π‘ˆ)
5 mapdval.f . . . . 5 𝐹 = (LFnlβ€˜π‘ˆ)
6 mapdval.l . . . . 5 𝐿 = (LKerβ€˜π‘ˆ)
7 mapdval.o . . . . 5 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
8 mapdval.m . . . . 5 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
92, 3, 4, 5, 6, 7, 8mapdfval 40486 . . . 4 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}))
101, 9syl 17 . . 3 (πœ‘ β†’ 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}))
1110fveq1d 6890 . 2 (πœ‘ β†’ (π‘€β€˜π‘‡) = ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)})β€˜π‘‡))
12 mapdval.t . . 3 (πœ‘ β†’ 𝑇 ∈ 𝑆)
135fvexi 6902 . . . 4 𝐹 ∈ V
1413rabex 5331 . . 3 {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)} ∈ V
15 sseq2 4007 . . . . . 6 (𝑠 = 𝑇 β†’ ((π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠 ↔ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇))
1615anbi2d 629 . . . . 5 (𝑠 = 𝑇 β†’ (((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠) ↔ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)))
1716rabbidv 3440 . . . 4 (𝑠 = 𝑇 β†’ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)} = {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)})
18 eqid 2732 . . . 4 (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)}) = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)})
1917, 18fvmptg 6993 . . 3 ((𝑇 ∈ 𝑆 ∧ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)} ∈ V) β†’ ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)})β€˜π‘‡) = {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)})
2012, 14, 19sylancl 586 . 2 (πœ‘ β†’ ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑠)})β€˜π‘‡) = {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)})
2111, 20eqtrd 2772 1 (πœ‘ β†’ (π‘€β€˜π‘‡) = {𝑓 ∈ 𝐹 ∣ ((π‘‚β€˜(π‘‚β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“) ∧ (π‘‚β€˜(πΏβ€˜π‘“)) βŠ† 𝑇)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3947   ↦ cmpt 5230  β€˜cfv 6540  LSubSpclss 20534  LFnlclfn 37915  LKerclk 37943  LHypclh 38843  DVecHcdvh 39937  ocHcoch 40206  mapdcmpd 40483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-mapd 40484
This theorem is referenced by:  mapdvalc  40488  mapddlssN  40499  mapdsn  40500  mapd1o  40507  mapd0  40524
  Copyright terms: Public domain W3C validator