Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval Structured version   Visualization version   GIF version

Theorem mapdval 41629
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
mapdval.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   𝑀(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem mapdval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mapdval.k . . . 4 (𝜑 → (𝐾𝑋𝑊𝐻))
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
5 mapdval.f . . . . 5 𝐹 = (LFnl‘𝑈)
6 mapdval.l . . . . 5 𝐿 = (LKer‘𝑈)
7 mapdval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
92, 3, 4, 5, 6, 7, 8mapdfval 41628 . . . 4 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
101, 9syl 17 . . 3 (𝜑𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
1110fveq1d 6863 . 2 (𝜑 → (𝑀𝑇) = ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇))
12 mapdval.t . . 3 (𝜑𝑇𝑆)
135fvexi 6875 . . . 4 𝐹 ∈ V
1413rabex 5297 . . 3 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V
15 sseq2 3976 . . . . . 6 (𝑠 = 𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑇))
1615anbi2d 630 . . . . 5 (𝑠 = 𝑇 → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)))
1716rabbidv 3416 . . . 4 (𝑠 = 𝑇 → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
18 eqid 2730 . . . 4 (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
1917, 18fvmptg 6969 . . 3 ((𝑇𝑆 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V) → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2012, 14, 19sylancl 586 . 2 (𝜑 → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2111, 20eqtrd 2765 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  cfv 6514  LSubSpclss 20844  LFnlclfn 39057  LKerclk 39085  LHypclh 39985  DVecHcdvh 41079  ocHcoch 41348  mapdcmpd 41625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-mapd 41626
This theorem is referenced by:  mapdvalc  41630  mapddlssN  41641  mapdsn  41642  mapd1o  41649  mapd0  41666
  Copyright terms: Public domain W3C validator