![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdval | Structured version Visualization version GIF version |
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
Ref | Expression |
---|---|
mapdval | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
2 | mapdval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | mapdval.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | mapdval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | mapdval.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | mapdval.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | mapdval.o | . . . . 5 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
8 | mapdval.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mapdfval 39853 | . . . 4 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})) |
10 | 1, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})) |
11 | 10 | fveq1d 6811 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})‘𝑇)) |
12 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
13 | 5 | fvexi 6823 | . . . 4 ⊢ 𝐹 ∈ V |
14 | 13 | rabex 5269 | . . 3 ⊢ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} ∈ V |
15 | sseq2 3956 | . . . . . 6 ⊢ (𝑠 = 𝑇 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) | |
16 | 15 | anbi2d 629 | . . . . 5 ⊢ (𝑠 = 𝑇 → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
17 | 16 | rabbidv 3412 | . . . 4 ⊢ (𝑠 = 𝑇 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)} = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
18 | eqid 2737 | . . . 4 ⊢ (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)}) = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)}) | |
19 | 17, 18 | fvmptg 6910 | . . 3 ⊢ ((𝑇 ∈ 𝑆 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} ∈ V) → ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
20 | 12, 14, 19 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
21 | 11, 20 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 Vcvv 3441 ⊆ wss 3896 ↦ cmpt 5168 ‘cfv 6463 LSubSpclss 20264 LFnlclfn 37283 LKerclk 37311 LHypclh 38210 DVecHcdvh 39304 ocHcoch 39573 mapdcmpd 39850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-mapd 39851 |
This theorem is referenced by: mapdvalc 39855 mapddlssN 39866 mapdsn 39867 mapd1o 39874 mapd0 39891 |
Copyright terms: Public domain | W3C validator |