Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval Structured version   Visualization version   GIF version

Theorem mapdval 41652
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
mapdval.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   𝑀(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem mapdval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mapdval.k . . . 4 (𝜑 → (𝐾𝑋𝑊𝐻))
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
5 mapdval.f . . . . 5 𝐹 = (LFnl‘𝑈)
6 mapdval.l . . . . 5 𝐿 = (LKer‘𝑈)
7 mapdval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
92, 3, 4, 5, 6, 7, 8mapdfval 41651 . . . 4 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
101, 9syl 17 . . 3 (𝜑𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
1110fveq1d 6883 . 2 (𝜑 → (𝑀𝑇) = ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇))
12 mapdval.t . . 3 (𝜑𝑇𝑆)
135fvexi 6895 . . . 4 𝐹 ∈ V
1413rabex 5314 . . 3 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V
15 sseq2 3990 . . . . . 6 (𝑠 = 𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑇))
1615anbi2d 630 . . . . 5 (𝑠 = 𝑇 → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)))
1716rabbidv 3428 . . . 4 (𝑠 = 𝑇 → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
18 eqid 2736 . . . 4 (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
1917, 18fvmptg 6989 . . 3 ((𝑇𝑆 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V) → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2012, 14, 19sylancl 586 . 2 (𝜑 → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2111, 20eqtrd 2771 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931  cmpt 5206  cfv 6536  LSubSpclss 20893  LFnlclfn 39080  LKerclk 39108  LHypclh 40008  DVecHcdvh 41102  ocHcoch 41371  mapdcmpd 41648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-mapd 41649
This theorem is referenced by:  mapdvalc  41653  mapddlssN  41664  mapdsn  41665  mapd1o  41672  mapd0  41689
  Copyright terms: Public domain W3C validator