Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval Structured version   Visualization version   GIF version

Theorem mapdval 38779
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
mapdval.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   𝑀(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem mapdval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mapdval.k . . . 4 (𝜑 → (𝐾𝑋𝑊𝐻))
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
5 mapdval.f . . . . 5 𝐹 = (LFnl‘𝑈)
6 mapdval.l . . . . 5 𝐿 = (LKer‘𝑈)
7 mapdval.o . . . . 5 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
92, 3, 4, 5, 6, 7, 8mapdfval 38778 . . . 4 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
101, 9syl 17 . . 3 (𝜑𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
1110fveq1d 6672 . 2 (𝜑 → (𝑀𝑇) = ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇))
12 mapdval.t . . 3 (𝜑𝑇𝑆)
135fvexi 6684 . . . 4 𝐹 ∈ V
1413rabex 5235 . . 3 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V
15 sseq2 3993 . . . . . 6 (𝑠 = 𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑇))
1615anbi2d 630 . . . . 5 (𝑠 = 𝑇 → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)))
1716rabbidv 3480 . . . 4 (𝑠 = 𝑇 → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
18 eqid 2821 . . . 4 (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
1917, 18fvmptg 6766 . . 3 ((𝑇𝑆 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)} ∈ V) → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2012, 14, 19sylancl 588 . 2 (𝜑 → ((𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
2111, 20eqtrd 2856 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  wss 3936  cmpt 5146  cfv 6355  LSubSpclss 19703  LFnlclfn 36208  LKerclk 36236  LHypclh 37135  DVecHcdvh 38229  ocHcoch 38498  mapdcmpd 38775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-mapd 38776
This theorem is referenced by:  mapdvalc  38780  mapddlssN  38791  mapdsn  38792  mapd1o  38799  mapd0  38816
  Copyright terms: Public domain W3C validator