| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdval | Structured version Visualization version GIF version | ||
| Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
| Ref | Expression |
|---|---|
| mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
| mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
| mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mapdval | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
| 2 | mapdval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | mapdval.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 5 | mapdval.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | mapdval.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 7 | mapdval.o | . . . . 5 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 8 | mapdval.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | mapdfval 41651 | . . . 4 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})) |
| 10 | 1, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})) |
| 11 | 10 | fveq1d 6883 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})‘𝑇)) |
| 12 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 13 | 5 | fvexi 6895 | . . . 4 ⊢ 𝐹 ∈ V |
| 14 | 13 | rabex 5314 | . . 3 ⊢ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} ∈ V |
| 15 | sseq2 3990 | . . . . . 6 ⊢ (𝑠 = 𝑇 → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) | |
| 16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑠 = 𝑇 → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 17 | 16 | rabbidv 3428 | . . . 4 ⊢ (𝑠 = 𝑇 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)} = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| 18 | eqid 2736 | . . . 4 ⊢ (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)}) = (𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)}) | |
| 19 | 17, 18 | fvmptg 6989 | . . 3 ⊢ ((𝑇 ∈ 𝑆 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} ∈ V) → ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| 20 | 12, 14, 19 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑠 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑠)})‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| 21 | 11, 20 | eqtrd 2771 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 ‘cfv 6536 LSubSpclss 20893 LFnlclfn 39080 LKerclk 39108 LHypclh 40008 DVecHcdvh 41102 ocHcoch 41371 mapdcmpd 41648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-mapd 41649 |
| This theorem is referenced by: mapdvalc 41653 mapddlssN 41664 mapdsn 41665 mapd1o 41672 mapd0 41689 |
| Copyright terms: Public domain | W3C validator |